Skip to content
Snippets Groups Projects
Commit e3c1b855 authored by Kai Chen's avatar Kai Chen
Browse files

refactoring for sampler and assigner

parent 65a2e5ea
No related branches found
No related tags found
No related merge requests found
Showing
with 156 additions and 108 deletions
......@@ -77,17 +77,17 @@ model = dict(
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
......@@ -95,49 +95,49 @@ train_cfg = dict(
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False)
......
......@@ -77,17 +77,17 @@ model = dict(
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
......@@ -95,49 +95,49 @@ train_cfg = dict(
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False)
......
......@@ -66,17 +66,17 @@ model = dict(
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
......@@ -84,47 +84,47 @@ train_cfg = dict(
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)
],
......
......@@ -66,17 +66,17 @@ model = dict(
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
......@@ -84,47 +84,47 @@ train_cfg = dict(
rcnn=[
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.6,
neg_iou_thr=0.6,
min_pos_iou=0.6,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.7,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)
],
......
......@@ -44,17 +44,17 @@ model = dict(
train_cfg = dict(
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False))
......
......@@ -44,17 +44,17 @@ model = dict(
train_cfg = dict(
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False))
......
......@@ -33,17 +33,17 @@ model = dict(
train_cfg = dict(
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
pos_weight=-1,
debug=False))
test_cfg = dict(
......
......@@ -33,17 +33,17 @@ model = dict(
train_cfg = dict(
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
pos_weight=-1,
debug=False))
test_cfg = dict(
......
......@@ -43,34 +43,34 @@ model = dict(
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
pos_weight=-1,
debug=False))
test_cfg = dict(
......
......@@ -43,34 +43,34 @@ model = dict(
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
pos_weight=-1,
debug=False))
test_cfg = dict(
......
......@@ -54,34 +54,34 @@ model = dict(
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False))
......
......@@ -54,34 +54,34 @@ model = dict(
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
debug=False),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=True),
mask_size=28,
pos_weight=-1,
debug=False))
......
......@@ -31,7 +31,11 @@ model = dict(
# training and testing settings
train_cfg = dict(
assigner=dict(
pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1),
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
smoothl1_beta=0.11,
gamma=2.0,
alpha=0.25,
......
......@@ -31,7 +31,11 @@ model = dict(
# training and testing settings
train_cfg = dict(
assigner=dict(
pos_iou_thr=0.5, neg_iou_thr=0.4, min_pos_iou=0, ignore_iof_thr=-1),
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0,
ignore_iof_thr=-1),
smoothl1_beta=0.11,
gamma=2.0,
alpha=0.25,
......
......@@ -28,17 +28,17 @@ model = dict(
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
......
......@@ -28,17 +28,17 @@ model = dict(
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False,
pos_balance_sampling=False,
neg_balance_thr=0),
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
smoothl1_beta=1 / 9.0,
......
import torch
from ..bbox import assign_and_sample, BBoxAssigner, SamplingResult, bbox2delta
from ..bbox import assign_and_sample, build_assigner, PseudoSampler, bbox2delta
from ..utils import multi_apply
......@@ -107,16 +107,12 @@ def anchor_target_single(flat_anchors,
assign_result, sampling_result = assign_and_sample(
anchors, gt_bboxes, None, None, cfg)
else:
bbox_assigner = BBoxAssigner(**cfg.assigner)
bbox_assigner = build_assigner(cfg.assigner)
assign_result = bbox_assigner.assign(anchors, gt_bboxes, None,
gt_labels)
pos_inds = torch.nonzero(
assign_result.gt_inds > 0).squeeze(-1).unique()
neg_inds = torch.nonzero(
assign_result.gt_inds == 0).squeeze(-1).unique()
gt_flags = anchors.new_zeros(anchors.shape[0], dtype=torch.uint8)
sampling_result = SamplingResult(pos_inds, neg_inds, anchors,
gt_bboxes, assign_result, gt_flags)
bbox_sampler = PseudoSampler()
sampling_result = bbox_sampler.sample(assign_result, anchors,
gt_bboxes)
num_valid_anchors = anchors.shape[0]
bbox_targets = torch.zeros_like(anchors)
......
from .geometry import bbox_overlaps
from .assignment import BBoxAssigner, AssignResult
from .sampling import (BBoxSampler, SamplingResult, assign_and_sample,
random_choice)
from .assigners import BaseAssigner, MaxIoUAssigner, AssignResult
from .samplers import (BaseSampler, PseudoSampler, RandomSampler,
InstanceBalancedPosSampler, IoUBalancedNegSampler,
CombinedSampler, SamplingResult)
from .assign_sampling import build_assigner, build_sampler, assign_and_sample
from .transforms import (bbox2delta, delta2bbox, bbox_flip, bbox_mapping,
bbox_mapping_back, bbox2roi, roi2bbox, bbox2result)
from .bbox_target import bbox_target
__all__ = [
'bbox_overlaps', 'BBoxAssigner', 'AssignResult', 'BBoxSampler',
'SamplingResult', 'assign_and_sample', 'random_choice', 'bbox2delta',
'delta2bbox', 'bbox_flip', 'bbox_mapping', 'bbox_mapping_back', 'bbox2roi',
'roi2bbox', 'bbox2result', 'bbox_target'
'bbox_overlaps', 'BaseAssigner', 'MaxIoUAssigner', 'AssignResult',
'BaseSampler', 'PseudoSampler', 'RandomSampler',
'InstanceBalancedPosSampler', 'IoUBalancedNegSampler', 'CombinedSampler',
'SamplingResult', 'build_assigner', 'build_sampler', 'assign_and_sample',
'bbox2delta', 'delta2bbox', 'bbox_flip', 'bbox_mapping',
'bbox_mapping_back', 'bbox2roi', 'roi2bbox', 'bbox2result', 'bbox_target'
]
import mmcv
from . import assigners, samplers
def build_assigner(cfg, default_args=None):
if isinstance(cfg, assigners.BaseAssigner):
return cfg
elif isinstance(cfg, dict):
return mmcv.runner.obj_from_dict(
cfg, assigners, default_args=default_args)
else:
raise TypeError('Invalid type {} for building a sampler'.format(
type(cfg)))
def build_sampler(cfg, default_args=None):
if isinstance(cfg, samplers.BaseSampler):
return cfg
elif isinstance(cfg, dict):
return mmcv.runner.obj_from_dict(
cfg, samplers, default_args=default_args)
else:
raise TypeError('Invalid type {} for building a sampler'.format(
type(cfg)))
def assign_and_sample(bboxes, gt_bboxes, gt_bboxes_ignore, gt_labels, cfg):
bbox_assigner = build_assigner(cfg.assigner)
bbox_sampler = build_sampler(cfg.sampler)
assign_result = bbox_assigner.assign(bboxes, gt_bboxes, gt_bboxes_ignore,
gt_labels)
sampling_result = bbox_sampler.sample(assign_result, bboxes, gt_bboxes,
gt_labels)
return assign_result, sampling_result
from .base_assigner import BaseAssigner
from .max_iou_assigner import MaxIoUAssigner
from .assign_result import AssignResult
__all__ = ['BaseAssigner', 'MaxIoUAssigner', 'AssignResult']
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment