Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
food-round2
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Joel Joseph
food-round2
Commits
65a2e5ea
Unverified
Commit
65a2e5ea
authored
6 years ago
by
Kai Chen
Committed by
GitHub
6 years ago
Browse files
Options
Downloads
Plain Diff
Merge pull request #143 from hellock/mask-vis
Allow mask visualization
parents
a6ee0532
2e856c71
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
mmdet/models/detectors/base.py
+19
-2
19 additions, 2 deletions
mmdet/models/detectors/base.py
mmdet/models/detectors/cascade_rcnn.py
+6
-7
6 additions, 7 deletions
mmdet/models/detectors/cascade_rcnn.py
mmdet/models/detectors/mask_rcnn.py
+0
-7
0 additions, 7 deletions
mmdet/models/detectors/mask_rcnn.py
with
25 additions
and
16 deletions
mmdet/models/detectors/base.py
+
19
−
2
View file @
65a2e5ea
...
@@ -4,6 +4,7 @@ from abc import ABCMeta, abstractmethod
...
@@ -4,6 +4,7 @@ from abc import ABCMeta, abstractmethod
import
mmcv
import
mmcv
import
numpy
as
np
import
numpy
as
np
import
torch.nn
as
nn
import
torch.nn
as
nn
import
pycocotools.mask
as
maskUtils
from
mmdet.core
import
tensor2imgs
,
get_classes
from
mmdet.core
import
tensor2imgs
,
get_classes
...
@@ -86,6 +87,11 @@ class BaseDetector(nn.Module):
...
@@ -86,6 +87,11 @@ class BaseDetector(nn.Module):
img_norm_cfg
,
img_norm_cfg
,
dataset
=
'
coco
'
,
dataset
=
'
coco
'
,
score_thr
=
0.3
):
score_thr
=
0.3
):
if
isinstance
(
result
,
tuple
):
bbox_result
,
segm_result
=
result
else
:
bbox_result
,
segm_result
=
result
,
None
img_tensor
=
data
[
'
img
'
][
0
]
img_tensor
=
data
[
'
img
'
][
0
]
img_metas
=
data
[
'
img_meta
'
][
0
].
data
[
0
]
img_metas
=
data
[
'
img_meta
'
][
0
].
data
[
0
]
imgs
=
tensor2imgs
(
img_tensor
,
**
img_norm_cfg
)
imgs
=
tensor2imgs
(
img_tensor
,
**
img_norm_cfg
)
...
@@ -102,12 +108,23 @@ class BaseDetector(nn.Module):
...
@@ -102,12 +108,23 @@ class BaseDetector(nn.Module):
for
img
,
img_meta
in
zip
(
imgs
,
img_metas
):
for
img
,
img_meta
in
zip
(
imgs
,
img_metas
):
h
,
w
,
_
=
img_meta
[
'
img_shape
'
]
h
,
w
,
_
=
img_meta
[
'
img_shape
'
]
img_show
=
img
[:
h
,
:
w
,
:]
img_show
=
img
[:
h
,
:
w
,
:]
bboxes
=
np
.
vstack
(
bbox_result
)
# draw segmentation masks
if
segm_result
is
not
None
:
segms
=
mmcv
.
concat_list
(
segm_result
)
inds
=
np
.
where
(
bboxes
[:,
-
1
]
>
score_thr
)[
0
]
for
i
in
inds
:
color_mask
=
np
.
random
.
randint
(
0
,
256
,
(
1
,
3
),
dtype
=
np
.
uint8
)
mask
=
maskUtils
.
decode
(
segms
[
i
]).
astype
(
np
.
bool
)
img_show
[
mask
]
=
img_show
[
mask
]
*
0.5
+
color_mask
*
0.5
# draw bounding boxes
labels
=
[
labels
=
[
np
.
full
(
bbox
.
shape
[
0
],
i
,
dtype
=
np
.
int32
)
np
.
full
(
bbox
.
shape
[
0
],
i
,
dtype
=
np
.
int32
)
for
i
,
bbox
in
enumerate
(
result
)
for
i
,
bbox
in
enumerate
(
bbox_
result
)
]
]
labels
=
np
.
concatenate
(
labels
)
labels
=
np
.
concatenate
(
labels
)
bboxes
=
np
.
vstack
(
result
)
mmcv
.
imshow_det_bboxes
(
mmcv
.
imshow_det_bboxes
(
img_show
,
img_show
,
bboxes
,
bboxes
,
...
...
This diff is collapsed.
Click to expand it.
mmdet/models/detectors/cascade_rcnn.py
+
6
−
7
View file @
65a2e5ea
...
@@ -306,14 +306,13 @@ class CascadeRCNN(BaseDetector, RPNTestMixin):
...
@@ -306,14 +306,13 @@ class CascadeRCNN(BaseDetector, RPNTestMixin):
raise
NotImplementedError
raise
NotImplementedError
def
show_result
(
self
,
data
,
result
,
img_norm_cfg
,
**
kwargs
):
def
show_result
(
self
,
data
,
result
,
img_norm_cfg
,
**
kwargs
):
# TODO: show segmentation masks
if
self
.
with_mask
:
if
self
.
with_mask
:
ms_bbox_result
,
ms_segm_result
=
result
ms_bbox_result
,
ms_segm_result
=
result
if
isinstance
(
ms_bbox_result
,
dict
):
result
=
(
ms_bbox_result
[
'
ensemble
'
],
ms_segm_result
[
'
ensemble
'
])
else
:
else
:
ms_bbox_result
=
result
if
isinstance
(
result
,
dict
):
if
isinstance
(
ms_bbox_result
,
dict
):
result
=
result
[
'
ensemble
'
]
bbox_result
=
ms_bbox_result
[
'
ensemble
'
]
super
(
CascadeRCNN
,
self
).
show_result
(
data
,
result
,
img_norm_cfg
,
else
:
bbox_result
=
ms_bbox_result
super
(
CascadeRCNN
,
self
).
show_result
(
data
,
bbox_result
,
img_norm_cfg
,
**
kwargs
)
**
kwargs
)
This diff is collapsed.
Click to expand it.
mmdet/models/detectors/mask_rcnn.py
+
0
−
7
View file @
65a2e5ea
...
@@ -25,10 +25,3 @@ class MaskRCNN(TwoStageDetector):
...
@@ -25,10 +25,3 @@ class MaskRCNN(TwoStageDetector):
train_cfg
=
train_cfg
,
train_cfg
=
train_cfg
,
test_cfg
=
test_cfg
,
test_cfg
=
test_cfg
,
pretrained
=
pretrained
)
pretrained
=
pretrained
)
def
show_result
(
self
,
data
,
result
,
img_norm_cfg
,
**
kwargs
):
# TODO: show segmentation masks
assert
isinstance
(
result
,
tuple
)
assert
len
(
result
)
==
2
# (bbox_results, segm_results)
super
(
MaskRCNN
,
self
).
show_result
(
data
,
result
[
0
],
img_norm_cfg
,
**
kwargs
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment