Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
food-round2
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Joel Joseph
food-round2
Commits
4c1da636
Commit
4c1da636
authored
6 years ago
by
myownskyW7
Browse files
Options
Downloads
Patches
Plain Diff
add high level api
parent
d13997c3
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
mmdet/api/__init__.py
+4
-0
4 additions, 0 deletions
mmdet/api/__init__.py
mmdet/api/inference.py
+54
-0
54 additions, 0 deletions
mmdet/api/inference.py
mmdet/api/train.py
+120
-0
120 additions, 0 deletions
mmdet/api/train.py
tools/train.py
+10
-115
10 additions, 115 deletions
tools/train.py
with
188 additions
and
115 deletions
mmdet/api/__init__.py
0 → 100644
+
4
−
0
View file @
4c1da636
from
.train
import
train_detector
from
.inference
import
inference_detector
__all__
=
[
'
train_detector
'
,
'
inference_detector
'
]
This diff is collapsed.
Click to expand it.
mmdet/api/inference.py
0 → 100644
+
54
−
0
View file @
4c1da636
import
mmcv
import
numpy
as
np
import
torch
from
mmdet.datasets
import
to_tensor
from
mmdet.datasets.transforms
import
ImageTransform
from
mmdet.core
import
get_classes
def
_prepare_data
(
img
,
img_transform
,
cfg
,
device
):
ori_shape
=
img
.
shape
img
,
img_shape
,
pad_shape
,
scale_factor
=
img_transform
(
img
,
scale
=
cfg
.
data
.
test
.
img_scale
)
img
=
to_tensor
(
img
).
to
(
device
).
unsqueeze
(
0
)
img_meta
=
[
dict
(
ori_shape
=
ori_shape
,
img_shape
=
img_shape
,
pad_shape
=
pad_shape
,
scale_factor
=
scale_factor
,
flip
=
False
)
]
return
dict
(
img
=
[
img
],
img_meta
=
[
img_meta
])
def
inference_detector
(
model
,
imgs
,
cfg
,
device
=
'
cuda:0
'
):
imgs
=
imgs
if
isinstance
(
imgs
,
list
)
else
[
imgs
]
img_transform
=
ImageTransform
(
**
cfg
.
img_norm_cfg
,
size_divisor
=
cfg
.
data
.
test
.
size_divisor
)
model
=
model
.
to
(
device
)
model
.
eval
()
for
img
in
imgs
:
img
=
mmcv
.
imread
(
img
)
data
=
_prepare_data
(
img
,
img_transform
,
cfg
,
device
)
with
torch
.
no_grad
():
result
=
model
(
**
data
,
return_loss
=
False
,
rescale
=
True
)
yield
result
def
show_result
(
img
,
result
,
dataset
=
'
coco
'
,
score_thr
=
0.3
):
class_names
=
get_classes
(
dataset
)
labels
=
[
np
.
full
(
bbox
.
shape
[
0
],
i
,
dtype
=
np
.
int32
)
for
i
,
bbox
in
enumerate
(
result
)
]
labels
=
np
.
concatenate
(
labels
)
bboxes
=
np
.
vstack
(
result
)
mmcv
.
imshow_det_bboxes
(
img
.
copy
(),
bboxes
,
labels
,
class_names
=
class_names
,
score_thr
=
score_thr
)
This diff is collapsed.
Click to expand it.
mmdet/api/train.py
0 → 100644
+
120
−
0
View file @
4c1da636
from
__future__
import
division
import
logging
import
random
from
collections
import
OrderedDict
import
numpy
as
np
import
torch
from
mmcv.runner
import
Runner
,
DistSamplerSeedHook
from
mmcv.parallel
import
MMDataParallel
,
MMDistributedDataParallel
from
mmdet
import
__version__
from
mmdet.core
import
(
init_dist
,
DistOptimizerHook
,
CocoDistEvalRecallHook
,
CocoDistEvalmAPHook
)
from
mmdet.datasets
import
build_dataloader
from
mmdet.models
import
RPN
def
parse_losses
(
losses
):
log_vars
=
OrderedDict
()
for
loss_name
,
loss_value
in
losses
.
items
():
if
isinstance
(
loss_value
,
torch
.
Tensor
):
log_vars
[
loss_name
]
=
loss_value
.
mean
()
elif
isinstance
(
loss_value
,
list
):
log_vars
[
loss_name
]
=
sum
(
_loss
.
mean
()
for
_loss
in
loss_value
)
else
:
raise
TypeError
(
'
{} is not a tensor or list of tensors
'
.
format
(
loss_name
))
loss
=
sum
(
_value
for
_key
,
_value
in
log_vars
.
items
()
if
'
loss
'
in
_key
)
log_vars
[
'
loss
'
]
=
loss
for
name
in
log_vars
:
log_vars
[
name
]
=
log_vars
[
name
].
item
()
return
loss
,
log_vars
def
batch_processor
(
model
,
data
,
train_mode
):
losses
=
model
(
**
data
)
loss
,
log_vars
=
parse_losses
(
losses
)
outputs
=
dict
(
loss
=
loss
,
log_vars
=
log_vars
,
num_samples
=
len
(
data
[
'
img
'
].
data
))
return
outputs
def
get_logger
(
log_level
):
logging
.
basicConfig
(
format
=
'
%(asctime)s - %(levelname)s - %(message)s
'
,
level
=
log_level
)
logger
=
logging
.
getLogger
()
return
logger
def
set_random_seed
(
seed
):
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
torch
.
manual_seed
(
seed
)
torch
.
cuda
.
manual_seed_all
(
seed
)
def
train_detector
(
model
,
dataset
,
cfg
):
# save mmdet version in checkpoint as meta data
cfg
.
checkpoint_config
.
meta
=
dict
(
mmdet_version
=
__version__
,
config
=
cfg
.
text
)
logger
=
get_logger
(
cfg
.
log_level
)
# set random seed if specified
if
cfg
.
seed
is
not
None
:
logger
.
info
(
'
Set random seed to {}
'
.
format
(
cfg
.
seed
))
set_random_seed
(
cfg
.
seed
)
# init distributed environment if necessary
if
cfg
.
launcher
==
'
none
'
:
dist
=
False
logger
.
info
(
'
Non-distributed training.
'
)
else
:
dist
=
True
init_dist
(
cfg
.
launcher
,
**
cfg
.
dist_params
)
if
torch
.
distributed
.
get_rank
()
!=
0
:
logger
.
setLevel
(
'
ERROR
'
)
logger
.
info
(
'
Distributed training.
'
)
# prepare data loaders
data_loaders
=
[
build_dataloader
(
dataset
,
cfg
.
data
.
imgs_per_gpu
,
cfg
.
data
.
workers_per_gpu
,
cfg
.
gpus
,
dist
)
]
# put model on gpus
if
dist
:
model
=
MMDistributedDataParallel
(
model
.
cuda
())
else
:
model
=
MMDataParallel
(
model
,
device_ids
=
range
(
cfg
.
gpus
)).
cuda
()
# build runner
runner
=
Runner
(
model
,
batch_processor
,
cfg
.
optimizer
,
cfg
.
work_dir
,
cfg
.
log_level
)
# register hooks
optimizer_config
=
DistOptimizerHook
(
**
cfg
.
optimizer_config
)
if
dist
else
cfg
.
optimizer_config
runner
.
register_training_hooks
(
cfg
.
lr_config
,
optimizer_config
,
cfg
.
checkpoint_config
,
cfg
.
log_config
)
if
dist
:
runner
.
register_hook
(
DistSamplerSeedHook
())
# register eval hooks
if
cfg
.
validate
:
if
isinstance
(
model
.
module
,
RPN
):
runner
.
register_hook
(
CocoDistEvalRecallHook
(
cfg
.
data
.
val
))
elif
cfg
.
data
.
val
.
type
==
'
CocoDataset
'
:
runner
.
register_hook
(
CocoDistEvalmAPHook
(
cfg
.
data
.
val
))
if
cfg
.
resume_from
:
runner
.
resume
(
cfg
.
resume_from
)
elif
cfg
.
load_from
:
runner
.
load_checkpoint
(
cfg
.
load_from
)
runner
.
run
(
data_loaders
,
cfg
.
workflow
,
cfg
.
total_epochs
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
tools/train.py
+
10
−
115
View file @
4c1da636
from
__future__
import
division
import
argparse
import
logging
import
random
from
collections
import
OrderedDict
import
numpy
as
np
import
torch
from
mmcv
import
Config
from
mmcv.runner
import
Runner
,
obj_from_dict
,
DistSamplerSeedHook
from
mmcv.parallel
import
MMDataParallel
,
MMDistributedDataParallel
from
mmdet
import
datasets
,
__version__
from
mmdet.core
import
(
init_dist
,
DistOptimizerHook
,
CocoDistEvalRecallHook
,
CocoDistEvalmAPHook
)
from
mmdet.datasets
import
build_dataloader
from
mmdet.models
import
build_detector
,
RPN
def
parse_losses
(
losses
):
log_vars
=
OrderedDict
()
for
loss_name
,
loss_value
in
losses
.
items
():
if
isinstance
(
loss_value
,
torch
.
Tensor
):
log_vars
[
loss_name
]
=
loss_value
.
mean
()
elif
isinstance
(
loss_value
,
list
):
log_vars
[
loss_name
]
=
sum
(
_loss
.
mean
()
for
_loss
in
loss_value
)
else
:
raise
TypeError
(
'
{} is not a tensor or list of tensors
'
.
format
(
loss_name
))
loss
=
sum
(
_value
for
_key
,
_value
in
log_vars
.
items
()
if
'
loss
'
in
_key
)
log_vars
[
'
loss
'
]
=
loss
for
name
in
log_vars
:
log_vars
[
name
]
=
log_vars
[
name
].
item
()
return
loss
,
log_vars
def
batch_processor
(
model
,
data
,
train_mode
):
losses
=
model
(
**
data
)
loss
,
log_vars
=
parse_losses
(
losses
)
outputs
=
dict
(
loss
=
loss
,
log_vars
=
log_vars
,
num_samples
=
len
(
data
[
'
img
'
].
data
))
return
outputs
def
get_logger
(
log_level
):
logging
.
basicConfig
(
format
=
'
%(asctime)s - %(levelname)s - %(message)s
'
,
level
=
log_level
)
logger
=
logging
.
getLogger
()
return
logger
from
mmcv.runner
import
obj_from_dict
def
set_random_seed
(
seed
):
random
.
seed
(
seed
)
np
.
random
.
seed
(
seed
)
torch
.
manual_seed
(
seed
)
torch
.
cuda
.
manual_seed_all
(
seed
)
from
mmdet
import
datasets
from
mmdet.api
import
train_detector
from
mmdet.models
import
build_detector
def
parse_args
():
...
...
@@ -86,71 +33,19 @@ def parse_args():
def
main
():
args
=
parse_args
()
cfg
=
Config
.
fromfile
(
args
.
config
)
if
args
.
work_dir
is
not
None
:
cfg
.
work_dir
=
args
.
work_dir
cfg
.
validate
=
args
.
validate
cfg
.
gpus
=
args
.
gpus
# save mmdet version in checkpoint as meta data
cfg
.
checkpoint_config
.
meta
=
dict
(
mmdet_version
=
__version__
,
config
=
cfg
.
text
)
logger
=
get_logger
(
cfg
.
log_level
)
# set random seed if specified
if
args
.
seed
is
not
None
:
logger
.
info
(
'
Set random seed to {}
'
.
format
(
args
.
seed
))
set_random_seed
(
args
.
seed
)
# init distributed environment if necessary
if
args
.
launcher
==
'
none
'
:
dist
=
False
logger
.
info
(
'
Non-distributed training.
'
)
else
:
dist
=
True
init_dist
(
args
.
launcher
,
**
cfg
.
dist_params
)
if
torch
.
distributed
.
get_rank
()
!=
0
:
logger
.
setLevel
(
'
ERROR
'
)
logger
.
info
(
'
Distributed training.
'
)
# prepare data loaders
train_dataset
=
obj_from_dict
(
cfg
.
data
.
train
,
datasets
)
data_loaders
=
[
build_dataloader
(
train_dataset
,
cfg
.
data
.
imgs_per_gpu
,
cfg
.
data
.
workers_per_gpu
,
cfg
.
gpus
,
dist
)
]
cfg
.
seed
=
args
.
seed
cfg
.
launcher
=
args
.
launcher
cfg
.
local_rank
=
args
.
local_rank
# build model
model
=
build_detector
(
cfg
.
model
,
train_cfg
=
cfg
.
train_cfg
,
test_cfg
=
cfg
.
test_cfg
)
if
dist
:
model
=
MMDistributedDataParallel
(
model
.
cuda
())
else
:
model
=
MMDataParallel
(
model
,
device_ids
=
range
(
cfg
.
gpus
)).
cuda
()
# build runner
runner
=
Runner
(
model
,
batch_processor
,
cfg
.
optimizer
,
cfg
.
work_dir
,
cfg
.
log_level
)
# register hooks
optimizer_config
=
DistOptimizerHook
(
**
cfg
.
optimizer_config
)
if
dist
else
cfg
.
optimizer_config
runner
.
register_training_hooks
(
cfg
.
lr_config
,
optimizer_config
,
cfg
.
checkpoint_config
,
cfg
.
log_config
)
if
dist
:
runner
.
register_hook
(
DistSamplerSeedHook
())
# register eval hooks
if
args
.
validate
:
if
isinstance
(
model
.
module
,
RPN
):
runner
.
register_hook
(
CocoDistEvalRecallHook
(
cfg
.
data
.
val
))
elif
cfg
.
data
.
val
.
type
==
'
CocoDataset
'
:
runner
.
register_hook
(
CocoDistEvalmAPHook
(
cfg
.
data
.
val
))
if
cfg
.
resume_from
:
runner
.
resume
(
cfg
.
resume_from
)
elif
cfg
.
load_from
:
runner
.
load_checkpoint
(
cfg
.
load_from
)
runner
.
run
(
data_loaders
,
cfg
.
workflow
,
cfg
.
total_epochs
)
train_dataset
=
obj_from_dict
(
cfg
.
data
.
train
,
datasets
)
train_detector
(
model
,
train_dataset
,
cfg
)
if
__name__
==
'
__main__
'
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment