From 4c1da63619fa5cc9126187767255d1c1f974e522 Mon Sep 17 00:00:00 2001
From: myownskyW7 <727032989@qq.com>
Date: Thu, 11 Oct 2018 23:30:00 +0800
Subject: [PATCH] add high level api

---
 mmdet/api/__init__.py  |   4 ++
 mmdet/api/inference.py |  54 ++++++++++++++++++
 mmdet/api/train.py     | 120 +++++++++++++++++++++++++++++++++++++++
 tools/train.py         | 125 ++++-------------------------------------
 4 files changed, 188 insertions(+), 115 deletions(-)
 create mode 100644 mmdet/api/__init__.py
 create mode 100644 mmdet/api/inference.py
 create mode 100644 mmdet/api/train.py

diff --git a/mmdet/api/__init__.py b/mmdet/api/__init__.py
new file mode 100644
index 0000000..970492f
--- /dev/null
+++ b/mmdet/api/__init__.py
@@ -0,0 +1,4 @@
+from .train import train_detector
+from .inference import inference_detector
+
+__all__ = ['train_detector', 'inference_detector']
diff --git a/mmdet/api/inference.py b/mmdet/api/inference.py
new file mode 100644
index 0000000..47b7de3
--- /dev/null
+++ b/mmdet/api/inference.py
@@ -0,0 +1,54 @@
+import mmcv
+import numpy as np
+import torch
+
+from mmdet.datasets import to_tensor
+from mmdet.datasets.transforms import ImageTransform
+from mmdet.core import get_classes
+
+
+def _prepare_data(img, img_transform, cfg, device):
+    ori_shape = img.shape
+    img, img_shape, pad_shape, scale_factor = img_transform(
+        img, scale=cfg.data.test.img_scale)
+    img = to_tensor(img).to(device).unsqueeze(0)
+    img_meta = [
+        dict(
+            ori_shape=ori_shape,
+            img_shape=img_shape,
+            pad_shape=pad_shape,
+            scale_factor=scale_factor,
+            flip=False)
+    ]
+    return dict(img=[img], img_meta=[img_meta])
+
+
+def inference_detector(model, imgs, cfg, device='cuda:0'):
+
+    imgs = imgs if isinstance(imgs, list) else [imgs]
+    img_transform = ImageTransform(
+        **cfg.img_norm_cfg, size_divisor=cfg.data.test.size_divisor)
+    model = model.to(device)
+    model.eval()
+    for img in imgs:
+        img = mmcv.imread(img)
+        data = _prepare_data(img, img_transform, cfg, device)
+        with torch.no_grad():
+            result = model(**data, return_loss=False, rescale=True)
+        yield result
+
+
+def show_result(img, result, dataset='coco', score_thr=0.3):
+    class_names = get_classes(dataset)
+    labels = [
+        np.full(bbox.shape[0], i, dtype=np.int32)
+        for i, bbox in enumerate(result)
+    ]
+    labels = np.concatenate(labels)
+    bboxes = np.vstack(result)
+    mmcv.imshow_det_bboxes(
+        img.copy(),
+        bboxes,
+        labels,
+        class_names=class_names,
+        score_thr=score_thr)
diff --git a/mmdet/api/train.py b/mmdet/api/train.py
new file mode 100644
index 0000000..28469a2
--- /dev/null
+++ b/mmdet/api/train.py
@@ -0,0 +1,120 @@
+from __future__ import division
+
+import logging
+import random
+from collections import OrderedDict
+
+import numpy as np
+import torch
+from mmcv.runner import Runner, DistSamplerSeedHook
+from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
+
+from mmdet import __version__
+from mmdet.core import (init_dist, DistOptimizerHook, CocoDistEvalRecallHook,
+                        CocoDistEvalmAPHook)
+from mmdet.datasets import build_dataloader
+from mmdet.models import RPN
+
+
+def parse_losses(losses):
+    log_vars = OrderedDict()
+    for loss_name, loss_value in losses.items():
+        if isinstance(loss_value, torch.Tensor):
+            log_vars[loss_name] = loss_value.mean()
+        elif isinstance(loss_value, list):
+            log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
+        else:
+            raise TypeError(
+                '{} is not a tensor or list of tensors'.format(loss_name))
+
+    loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)
+
+    log_vars['loss'] = loss
+    for name in log_vars:
+        log_vars[name] = log_vars[name].item()
+
+    return loss, log_vars
+
+
+def batch_processor(model, data, train_mode):
+    losses = model(**data)
+    loss, log_vars = parse_losses(losses)
+
+    outputs = dict(
+        loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
+
+    return outputs
+
+
+def get_logger(log_level):
+    logging.basicConfig(
+        format='%(asctime)s - %(levelname)s - %(message)s', level=log_level)
+    logger = logging.getLogger()
+    return logger
+
+
+def set_random_seed(seed):
+    random.seed(seed)
+    np.random.seed(seed)
+    torch.manual_seed(seed)
+    torch.cuda.manual_seed_all(seed)
+
+
+def train_detector(model, dataset, cfg):
+    # save mmdet version in checkpoint as meta data
+    cfg.checkpoint_config.meta = dict(
+        mmdet_version=__version__, config=cfg.text)
+
+    logger = get_logger(cfg.log_level)
+
+    # set random seed if specified
+    if cfg.seed is not None:
+        logger.info('Set random seed to {}'.format(cfg.seed))
+        set_random_seed(cfg.seed)
+
+    # init distributed environment if necessary
+    if cfg.launcher == 'none':
+        dist = False
+        logger.info('Non-distributed training.')
+    else:
+        dist = True
+        init_dist(cfg.launcher, **cfg.dist_params)
+        if torch.distributed.get_rank() != 0:
+            logger.setLevel('ERROR')
+        logger.info('Distributed training.')
+
+    # prepare data loaders
+    data_loaders = [
+        build_dataloader(dataset, cfg.data.imgs_per_gpu,
+                         cfg.data.workers_per_gpu, cfg.gpus, dist)
+    ]
+
+    # put model on gpus
+    if dist:
+        model = MMDistributedDataParallel(model.cuda())
+    else:
+        model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
+
+    # build runner
+    runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir,
+                    cfg.log_level)
+
+    # register hooks
+    optimizer_config = DistOptimizerHook(
+        **cfg.optimizer_config) if dist else cfg.optimizer_config
+    runner.register_training_hooks(cfg.lr_config, optimizer_config,
+                                   cfg.checkpoint_config, cfg.log_config)
+    if dist:
+        runner.register_hook(DistSamplerSeedHook())
+        # register eval hooks
+        if cfg.validate:
+            if isinstance(model.module, RPN):
+                runner.register_hook(CocoDistEvalRecallHook(cfg.data.val))
+            elif cfg.data.val.type == 'CocoDataset':
+                runner.register_hook(CocoDistEvalmAPHook(cfg.data.val))
+
+    if cfg.resume_from:
+        runner.resume(cfg.resume_from)
+    elif cfg.load_from:
+        runner.load_checkpoint(cfg.load_from)
+    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
\ No newline at end of file
diff --git a/tools/train.py b/tools/train.py
index 237ec2b..839f27c 100644
--- a/tools/train.py
+++ b/tools/train.py
@@ -1,65 +1,12 @@
 from __future__ import division
 
 import argparse
-import logging
-import random
-from collections import OrderedDict
-
-import numpy as np
-import torch
 from mmcv import Config
-from mmcv.runner import Runner, obj_from_dict, DistSamplerSeedHook
-from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
-
-from mmdet import datasets, __version__
-from mmdet.core import (init_dist, DistOptimizerHook, CocoDistEvalRecallHook,
-                        CocoDistEvalmAPHook)
-from mmdet.datasets import build_dataloader
-from mmdet.models import build_detector, RPN
-
-
-def parse_losses(losses):
-    log_vars = OrderedDict()
-    for loss_name, loss_value in losses.items():
-        if isinstance(loss_value, torch.Tensor):
-            log_vars[loss_name] = loss_value.mean()
-        elif isinstance(loss_value, list):
-            log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
-        else:
-            raise TypeError(
-                '{} is not a tensor or list of tensors'.format(loss_name))
-
-    loss = sum(_value for _key, _value in log_vars.items() if 'loss' in _key)
-
-    log_vars['loss'] = loss
-    for name in log_vars:
-        log_vars[name] = log_vars[name].item()
-
-    return loss, log_vars
-
-
-def batch_processor(model, data, train_mode):
-    losses = model(**data)
-    loss, log_vars = parse_losses(losses)
-
-    outputs = dict(
-        loss=loss, log_vars=log_vars, num_samples=len(data['img'].data))
-
-    return outputs
-
-
-def get_logger(log_level):
-    logging.basicConfig(
-        format='%(asctime)s - %(levelname)s - %(message)s', level=log_level)
-    logger = logging.getLogger()
-    return logger
+from mmcv.runner import obj_from_dict
 
-
-def set_random_seed(seed):
-    random.seed(seed)
-    np.random.seed(seed)
-    torch.manual_seed(seed)
-    torch.cuda.manual_seed_all(seed)
+from mmdet import datasets
+from mmdet.api import train_detector
+from mmdet.models import build_detector
 
 
 def parse_args():
@@ -86,71 +33,19 @@ def parse_args():
 
 def main():
     args = parse_args()
-
     cfg = Config.fromfile(args.config)
     if args.work_dir is not None:
         cfg.work_dir = args.work_dir
+    cfg.validate = args.validate
     cfg.gpus = args.gpus
-    # save mmdet version in checkpoint as meta data
-    cfg.checkpoint_config.meta = dict(
-        mmdet_version=__version__, config=cfg.text)
-
-    logger = get_logger(cfg.log_level)
-
-    # set random seed if specified
-    if args.seed is not None:
-        logger.info('Set random seed to {}'.format(args.seed))
-        set_random_seed(args.seed)
-
-    # init distributed environment if necessary
-    if args.launcher == 'none':
-        dist = False
-        logger.info('Non-distributed training.')
-    else:
-        dist = True
-        init_dist(args.launcher, **cfg.dist_params)
-        if torch.distributed.get_rank() != 0:
-            logger.setLevel('ERROR')
-        logger.info('Distributed training.')
-
-    # prepare data loaders
-    train_dataset = obj_from_dict(cfg.data.train, datasets)
-    data_loaders = [
-        build_dataloader(train_dataset, cfg.data.imgs_per_gpu,
-                         cfg.data.workers_per_gpu, cfg.gpus, dist)
-    ]
-
+    cfg.seed = args.seed
+    cfg.launcher = args.launcher
+    cfg.local_rank = args.local_rank
     # build model
     model = build_detector(
         cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
-    if dist:
-        model = MMDistributedDataParallel(model.cuda())
-    else:
-        model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()
-
-    # build runner
-    runner = Runner(model, batch_processor, cfg.optimizer, cfg.work_dir,
-                    cfg.log_level)
-
-    # register hooks
-    optimizer_config = DistOptimizerHook(
-        **cfg.optimizer_config) if dist else cfg.optimizer_config
-    runner.register_training_hooks(cfg.lr_config, optimizer_config,
-                                   cfg.checkpoint_config, cfg.log_config)
-    if dist:
-        runner.register_hook(DistSamplerSeedHook())
-        # register eval hooks
-        if args.validate:
-            if isinstance(model.module, RPN):
-                runner.register_hook(CocoDistEvalRecallHook(cfg.data.val))
-            elif cfg.data.val.type == 'CocoDataset':
-                runner.register_hook(CocoDistEvalmAPHook(cfg.data.val))
-
-    if cfg.resume_from:
-        runner.resume(cfg.resume_from)
-    elif cfg.load_from:
-        runner.load_checkpoint(cfg.load_from)
-    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)
+    train_dataset = obj_from_dict(cfg.data.train, datasets)
+    train_detector(model, train_dataset, cfg)
 
 
 if __name__ == '__main__':
-- 
GitLab