Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
ZEW Data Purchasing Challenge - Starter Kit
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ZEW Data Purchasing Challenge
ZEW Data Purchasing Challenge - Starter Kit
Commits
7ecb50b6
Commit
7ecb50b6
authored
3 years ago
by
Dipam Chakraborty
Browse files
Options
Downloads
Patches
Plain Diff
No LR Scheduler + 10 Epochs + Unfreeze all layers + No Training Blur
parent
f5ca0510
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
evaluator/model.py
+0
-3
0 additions, 3 deletions
evaluator/model.py
evaluator/trainer.py
+0
-7
0 additions, 7 deletions
evaluator/trainer.py
local_evaluation.py
+1
-1
1 addition, 1 deletion
local_evaluation.py
with
1 addition
and
11 deletions
evaluator/model.py
+
0
−
3
View file @
7ecb50b6
...
@@ -32,9 +32,6 @@ class ZEWDPCModel(torch.nn.Module):
...
@@ -32,9 +32,6 @@ class ZEWDPCModel(torch.nn.Module):
self
.
base_model
=
torchvision
.
models
.
efficientnet_b4
(
self
.
base_model
=
torchvision
.
models
.
efficientnet_b4
(
pretrained
=
self
.
use_pretrained
,
pretrained
=
self
.
use_pretrained
,
)
)
# Freeze feature extration layers
for
param
in
self
.
base_model
.
features
.
parameters
():
param
.
requires_grad
=
False
# Replace the final FC layer to support
# Replace the final FC layer to support
# the required number of classes
# the required number of classes
...
...
This diff is collapsed.
Click to expand it.
evaluator/trainer.py
+
0
−
7
View file @
7ecb50b6
...
@@ -25,7 +25,6 @@ from evaluator.evaluation_metrics import get_zew_dpc_metrics
...
@@ -25,7 +25,6 @@ from evaluator.evaluation_metrics import get_zew_dpc_metrics
import
torch
import
torch
import
torchvision
import
torchvision
from
torchvision
import
transforms
as
T
from
torchvision
import
transforms
as
T
from
torch.optim.lr_scheduler
import
ReduceLROnPlateau
,
CosineAnnealingLR
import
torchmetrics
import
torchmetrics
...
@@ -171,8 +170,6 @@ class ZEWDPCTrainer:
...
@@ -171,8 +170,6 @@ class ZEWDPCTrainer:
lr
=
self
.
hparams
[
"
learning_rate
"
]
lr
=
self
.
hparams
[
"
learning_rate
"
]
optimizer
=
torch
.
optim
.
Adam
(
params
=
self
.
model
.
parameters
(),
lr
=
lr
)
optimizer
=
torch
.
optim
.
Adam
(
params
=
self
.
model
.
parameters
(),
lr
=
lr
)
lr_sched
=
CosineAnnealingLR
(
optimizer
,
num_epochs
,
eta_min
=
1e-5
,
last_epoch
=-
1
,
verbose
=
True
)
# Setup Metric Meters
# Setup Metric Meters
val_loss_avg_meter
=
AverageMeter
()
val_loss_avg_meter
=
AverageMeter
()
train_loss_avg_meter
=
AverageMeter
()
train_loss_avg_meter
=
AverageMeter
()
...
@@ -264,8 +261,6 @@ class ZEWDPCTrainer:
...
@@ -264,8 +261,6 @@ class ZEWDPCTrainer:
val_loss_avg_meter
.
update
(
loss
.
item
(),
image
.
shape
[
0
])
val_loss_avg_meter
.
update
(
loss
.
item
(),
image
.
shape
[
0
])
tqdm_iter
.
set_postfix
(
avg_val_loss
=
val_loss_avg_meter
.
avg
)
tqdm_iter
.
set_postfix
(
avg_val_loss
=
val_loss_avg_meter
.
avg
)
lr_sched
.
step
()
print
(
print
(
"
Epoch %d - Average Val Loss: %.5f
\t
Val F1: %.5f
\t
Learning Rate %0.5f
"
"
Epoch %d - Average Val Loss: %.5f
\t
Val F1: %.5f
\t
Learning Rate %0.5f
"
%
(
%
(
...
@@ -279,8 +274,6 @@ class ZEWDPCTrainer:
...
@@ -279,8 +274,6 @@ class ZEWDPCTrainer:
best_val_loss
=
val_loss_avg_meter
.
avg
best_val_loss
=
val_loss_avg_meter
.
avg
self
.
best_model
=
copy
.
deepcopy
(
self
.
model
)
self
.
best_model
=
copy
.
deepcopy
(
self
.
model
)
train_metrics
=
{
"
f1
"
:
train_f1
.
compute
().
item
()}
train_metrics
=
{
"
f1
"
:
train_f1
.
compute
().
item
()}
val_metrics
=
{
"
f1
"
:
val_f1
.
compute
().
item
()}
val_metrics
=
{
"
f1
"
:
val_f1
.
compute
().
item
()}
info
=
{
"
learning_rate
"
:
optimizer
.
param_groups
[
0
][
"
lr
"
]}
info
=
{
"
learning_rate
"
:
optimizer
.
param_groups
[
0
][
"
lr
"
]}
...
...
This diff is collapsed.
Click to expand it.
local_evaluation.py
+
1
−
1
View file @
7ecb50b6
...
@@ -131,7 +131,7 @@ else:
...
@@ -131,7 +131,7 @@ else:
trainer
=
ZEWDPCTrainer
(
num_classes
=
6
,
use_pretrained
=
True
)
trainer
=
ZEWDPCTrainer
(
num_classes
=
6
,
use_pretrained
=
True
)
trainer
.
train
(
trainer
.
train
(
aggregated_dataset
,
num_epochs
=
25
,
validation_percentage
=
0.1
,
batch_size
=
64
aggregated_dataset
,
num_epochs
=
10
,
validation_percentage
=
0.1
,
batch_size
=
32
)
)
y_pred
=
trainer
.
predict
(
val_dataset
)
y_pred
=
trainer
.
predict
(
val_dataset
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment