Skip to content
Snippets Groups Projects
Commit c9207ec0 authored by Erik Nygren's avatar Erik Nygren :bullettrain_front:
Browse files

updated how closest neighbours are found. Now always looking at directions similar to initial try

parent 35cc3bc4
No related branches found
No related tags found
No related merge requests found
...@@ -33,7 +33,7 @@ env = RailEnv(width=50, ...@@ -33,7 +33,7 @@ env = RailEnv(width=50,
rail_generator=sparse_rail_generator(num_cities=9, # Number of cities in map (where train stations are) rail_generator=sparse_rail_generator(num_cities=9, # Number of cities in map (where train stations are)
min_node_dist=12, # Minimal distance of nodes min_node_dist=12, # Minimal distance of nodes
node_radius=4, # Proximity of stations to city center node_radius=4, # Proximity of stations to city center
seed=0, # Random seed seed=12, # Random seed
grid_mode=False, grid_mode=False,
max_inter_city_rails=2, max_inter_city_rails=2,
tracks_in_city=5, tracks_in_city=5,
......
...@@ -728,23 +728,19 @@ def sparse_rail_generator(num_cities=5, min_node_dist=20, node_radius=2, ...@@ -728,23 +728,19 @@ def sparse_rail_generator(num_cities=5, min_node_dist=20, node_radius=2,
for current_node in np.arange(len(node_positions)): for current_node in np.arange(len(node_positions)):
direction = 0 direction = 0
connected_to_city = [] connected_to_city = []
neighbours = _closest_neigh_in_direction(current_node, node_positions)
for nbr_connection_points in connection_info[current_node]: for nbr_connection_points in connection_info[current_node]:
if nbr_connection_points > 0: if nbr_connection_points > 0:
neighb_idx = _closest_neigh_in_direction(current_node, direction, node_positions) neighb_idx = neighbours[direction]
else: else:
direction += 1 direction += 1
continue continue
if neighb_idx is None or neighb_idx in connected_to_city: # If no closest neighbour was found look for the next one clock wise to avoid connecting to previous node
node_dist = [] tmp_direction = (direction + 1) % 4
for av_node in node_positions: while neighb_idx is None:
node_dist.append(distance_on_rail(node_positions[current_node], av_node)) neighb_idx = neighbours[tmp_direction]
i = 1 tmp_direction = (tmp_direction - 1) % 4
neighbours = np.argsort(node_dist)
neighb_idx = neighbours[i]
while neighb_idx in connected_to_city:
i += 1
neighb_idx = neighbours[i]
connected_to_city.append(neighb_idx) connected_to_city.append(neighb_idx)
for tmp_out_connection_point in connection_points[current_node][direction]: for tmp_out_connection_point in connection_points[current_node][direction]:
...@@ -882,33 +878,29 @@ def sparse_rail_generator(num_cities=5, min_node_dist=20, node_radius=2, ...@@ -882,33 +878,29 @@ def sparse_rail_generator(num_cities=5, min_node_dist=20, node_radius=2,
for cell in rails_to_fix: for cell in rails_to_fix:
grid_map.fix_transitions(cell) grid_map.fix_transitions(cell)
def _closest_neigh_in_direction(current_node, direction, node_positions): def _closest_neigh_in_direction(current_node, node_positions):
# Sort available neighbors according to their distance. """
Returns indices of closest neighbours in every direction NESW
:param current_node: Index of node in node_positions list
:param node_positions: list of all points being considered
:return: list of index of closest neighbours in all directions
"""
node_dist = [] node_dist = []
closest_neighb = [None for i in range(4)]
for av_node in range(len(node_positions)): for av_node in range(len(node_positions)):
node_dist.append(distance_on_rail(node_positions[current_node], node_positions[av_node])) node_dist.append(distance_on_rail(node_positions[current_node], node_positions[av_node]))
sorted_neighbours = np.argsort(node_dist) sorted_neighbours = np.argsort(node_dist)
direction_set = 0
for neighb in sorted_neighbours[1:]: for neighb in sorted_neighbours[1:]:
distance_0 = np.abs(node_positions[current_node][0] - node_positions[neighb][0]) direction_to_neighb = direction_to_point(node_positions[current_node], node_positions[neighb])
distance_1 = np.abs(node_positions[current_node][1] - node_positions[neighb][1]) if closest_neighb[direction_to_neighb] == None:
if direction == 0: closest_neighb[direction_to_neighb] = neighb
if node_positions[neighb][0] < node_positions[current_node][0] and distance_1 <= distance_0: direction_set += 1
return neighb
if direction_set == 4:
if direction == 1: return closest_neighb
if node_positions[neighb][1] > node_positions[current_node][1] and distance_0 <= distance_1:
return neighb return closest_neighb
if direction == 2:
if node_positions[neighb][0] > node_positions[current_node][0] and distance_1 <= distance_0:
return neighb
if direction == 3:
if node_positions[neighb][1] < node_positions[current_node][1] and distance_0 <= distance_1:
return neighb
return None
def argsort(seq): def argsort(seq):
# http://stackoverflow.com/questions/3071415/efficient-method-to-calculate-the-rank-vector-of-a-list-in-python # http://stackoverflow.com/questions/3071415/efficient-method-to-calculate-the-rank-vector-of-a-list-in-python
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment