Skip to content
Snippets Groups Projects
Commit 7abf576f authored by Erik Nygren's avatar Erik Nygren :bullettrain_front:
Browse files

Introducing malfunction_generators

This resolves issue #273

updated examples
parent f41d0f14
No related branches found
No related tags found
No related merge requests found
......@@ -2,6 +2,7 @@ import time
import numpy as np
from flatland.envs.malfunction_generators import malfunction_from_params
from flatland.envs.observations import TreeObsForRailEnv, GlobalObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv
......@@ -38,7 +39,7 @@ env = RailEnv(width=100, height=100, rail_generator=sparse_rail_generator(max_nu
max_rails_in_city=8,
),
schedule_generator=sparse_schedule_generator(speed_ration_map), number_of_agents=100,
obs_builder_object=GlobalObsForRailEnv(), malfunction_generator=stochastic_data,
obs_builder_object=GlobalObsForRailEnv(), malfunction_generator=malfunction_from_params(stochastic_data),
remove_agents_at_target=True)
# RailEnv.DEPOT_POSITION = lambda agent, agent_handle : (agent_handle % env.height,0)
......
......@@ -3,6 +3,7 @@ import numpy as np
# In Flatland you can use custom observation builders and predicitors
# Observation builders generate the observation needed by the controller
# Preditctors can be used to do short time prediction which can help in avoiding conflicts in the network
from flatland.envs.malfunction_generators import malfunction_from_params
from flatland.envs.observations import GlobalObsForRailEnv
# First of all we import the Flatland rail environment
from flatland.envs.rail_env import RailEnv
......@@ -73,7 +74,7 @@ observation_builder = GlobalObsForRailEnv()
# Construct the enviornment with the given observation, generataors, predictors, and stochastic data
env = RailEnv(width=width, height=height, rail_generator=rail_generator, schedule_generator=schedule_generator,
number_of_agents=nr_trains, obs_builder_object=observation_builder, malfunction_generator=stochastic_data,
number_of_agents=nr_trains, obs_builder_object=observation_builder, malfunction_generator=malfunction_from_params(stochastic_data),
remove_agents_at_target=True)
env.reset()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment