Forked from
Flatland / Flatland
2573 commits behind the upstream repository.
-
Erik Nygren authoredErik Nygren authored
training_navigation.py 5.37 KiB
from flatland.envs.rail_env import *
from flatland.envs.generators import *
from flatland.core.env_observation_builder import TreeObsForRailEnv
from flatland.utils.rendertools import *
from flatland.baselines.dueling_double_dqn import Agent
from collections import deque
import torch, random
random.seed(1)
np.random.seed(1)
# Example generate a rail given a manual specification,
# a map of tuples (cell_type, rotation)
transition_probability = [5, # empty cell - Case 0
1, # Case 1 - straight
5, # Case 2 - simple switch
1, # Case 3 - diamond crossing
1, # Case 4 - single slip
1, # Case 5 - double slip
1, # Case 6 - symmetrical
0, # Case 7 - dead end
15, # Case 1b (8) - simple turn right
15, # Case 1c (9) - simple turn left
15] # Case 2b (10) - simple switch mirrored
# Example generate a random rail
env = RailEnv(width=10,
height=10,
rail_generator=random_rail_generator(cell_type_relative_proportion=transition_probability),
number_of_agents=3)
"""
env = RailEnv(width=20,
height=20,
rail_generator=complex_rail_generator(nr_start_goal=20, min_dist=10, max_dist=99999, seed=0),
number_of_agents=5)
"""
env = RailEnv(width=20,
height=20,
rail_generator=rail_from_list_of_saved_GridTransitionMap_generator(
['../notebooks/testing_11.npy']),
number_of_agents=1)
env_renderer = RenderTool(env, gl="QT")
handle = env.get_agent_handles()
state_size = 105
action_size = 4
n_trials = 15000
eps = 1.
eps_end = 0.005
eps_decay = 0.998
action_dict = dict()
scores_window = deque(maxlen=100)
done_window = deque(maxlen=100)
scores = []
dones_list = []
action_prob = [0] * 4
agent = Agent(state_size, action_size, "FC", 0)
agent.qnetwork_local.load_state_dict(torch.load('../flatland/baselines/Nets/avoid_checkpoint15000.pth'))
demo = True
def max_lt(seq, val):
"""
Return greatest item in seq for which item < val applies.
None is returned if seq was empty or all items in seq were >= val.
"""
max = 0
idx = len(seq) - 1
while idx >= 0:
if seq[idx] < val and seq[idx] >= 0 and seq[idx] > max:
max = seq[idx]
idx -= 1
return max
def min_lt(seq, val):
"""
Return smallest item in seq for which item > val applies.
None is returned if seq was empty or all items in seq were >= val.
"""
min = np.inf
idx = len(seq) - 1
while idx >= 0:
if seq[idx] > val and seq[idx] < min:
min = seq[idx]
idx -= 1
return min
for trials in range(1, n_trials + 1):
# Reset environment
obs = env.reset()
for a in range(env.number_of_agents):
norm = max(1, max_lt(obs[a], np.inf))
obs[a] = np.clip(np.array(obs[a]) / norm, -1, 1)
# env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5)
score = 0
env_done = 0
# Run episode
for step in range(100):
if demo:
env_renderer.renderEnv(show=True)
# print(step)
# Action
for a in range(env.number_of_agents):
if demo:
eps = 0
action = agent.act(np.array(obs[a]), eps=eps)
action_prob[action] += 1
action_dict.update({a: action})
#env.obs_builder.util_print_obs_subtree(tree=obs[a], num_features_per_node=5)
# Environment step
next_obs, all_rewards, done, _ = env.step(action_dict)
for a in range(env.number_of_agents):
norm = max(1, max_lt(next_obs[a], np.inf))
next_obs[a] = np.clip(np.array(next_obs[a]) / norm, -1, 1)
# Update replay buffer and train agent
for a in range(env.number_of_agents):
agent.step(obs[a], action_dict[a], all_rewards[a], next_obs[a], done[a])
score += all_rewards[a]
obs = next_obs.copy()
if done['__all__']:
env_done = 1
break
# Epsilon decay
eps = max(eps_end, eps_decay * eps) # decrease epsilon
done_window.append(env_done)
scores_window.append(score) # save most recent score
scores.append(np.mean(scores_window))
dones_list.append((np.mean(done_window)))
print(
'\rTraining {} Agents.\tEpisode {}\tAverage Score: {:.0f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format(
env.number_of_agents,
trials,
np.mean(
scores_window),
100 * np.mean(
done_window),
eps, action_prob / np.sum(action_prob)),
end=" ")
if trials % 100 == 0:
print(
'\rTraining {} Agents.\tEpisode {}\tAverage Score: {:.0f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format(
env.number_of_agents,
trials,
np.mean(
scores_window),
100 * np.mean(
done_window),
eps, action_prob / np.sum(action_prob)))
torch.save(agent.qnetwork_local.state_dict(),
'../flatland/baselines/Nets/avoid_checkpoint' + str(trials) + '.pth')
action_prob = [1] * 4