Skip to content
Snippets Groups Projects
Forked from Flatland / Flatland
1380 commits behind the upstream repository.
test_multi_speed.py 8.39 KiB
from typing import List

import numpy as np
from attr import attrib, attrs

from flatland.core.grid.grid4 import Grid4TransitionsEnum
from flatland.envs.agent_utils import EnvAgent, EnvAgentStatic
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv, RailEnvActions
from flatland.envs.rail_generators import complex_rail_generator, rail_from_grid_transition_map
from flatland.envs.schedule_generators import complex_schedule_generator, random_schedule_generator
from flatland.utils.rendertools import RenderTool
from flatland.utils.simple_rail import make_simple_rail

np.random.seed(1)


# Use the complex_rail_generator to generate feasible network configurations with corresponding tasks
# Training on simple small tasks is the best way to get familiar with the environment
#


class RandomAgent:

    def __init__(self, state_size, action_size):
        self.state_size = state_size
        self.action_size = action_size

    def act(self, state):
        """
        :param state: input is the observation of the agent
        :return: returns an action
        """
        return np.random.choice([1, 2, 3])

    def step(self, memories):
        """
        Step function to improve agent by adjusting policy given the observations

        :param memories: SARS Tuple to be
        :return:
        """
        return

    def save(self, filename):
        # Store the current policy
        return

    def load(self, filename):
        # Load a policy
        return


def test_multi_speed_init():
    env = RailEnv(width=50,
                  height=50,
                  rail_generator=complex_rail_generator(nr_start_goal=10, nr_extra=1, min_dist=8, max_dist=99999,
                                                        seed=0),
                  schedule_generator=complex_schedule_generator(),
                  number_of_agents=5)
    # Initialize the agent with the parameters corresponding to the environment and observation_builder
    agent = RandomAgent(218, 4)

    # Empty dictionary for all agent action
    action_dict = dict()

    # Set all the different speeds
    # Reset environment and get initial observations for all agents
    env.reset()
    # Here you can also further enhance the provided observation by means of normalization
    # See training navigation example in the baseline repository
    old_pos = []
    for i_agent in range(env.get_num_agents()):
        env.agents[i_agent].speed_data['speed'] = 1. / (i_agent + 1)
        old_pos.append(env.agents[i_agent].position)

    # Run episode
    for step in range(100):

        # Choose an action for each agent in the environment
        for a in range(env.get_num_agents()):
            action = agent.act(0)
            action_dict.update({a: action})

            # Check that agent did not move in between its speed updates
            assert old_pos[a] == env.agents[a].position

        # Environment step which returns the observations for all agents, their corresponding
        # reward and whether they are done
        _, _, _, _ = env.step(action_dict)

        # Update old position whenever an agent was allowed to move
        for i_agent in range(env.get_num_agents()):
            if (step + 1) % (i_agent + 1) == 0:
                print(step, i_agent, env.agents[i_agent].position)
                old_pos[i_agent] = env.agents[i_agent].position


# TODO test malfunction
# TODO test other agent blocking
def test_multispeed_actions_no_malfunction(rendering=True):
    rail, rail_map = make_simple_rail()
    env = RailEnv(width=rail_map.shape[1],
                  height=rail_map.shape[0],
                  rail_generator=rail_from_grid_transition_map(rail),
                  schedule_generator=random_schedule_generator(),
                  number_of_agents=1,
                  obs_builder_object=TreeObsForRailEnv(max_depth=2, predictor=ShortestPathPredictorForRailEnv()),
                  )

    # initialize agents_static
    env.reset()

    @attrs
    class Replay(object):
        position = attrib()
        direction = attrib()
        action = attrib(type=RailEnvActions)

    @attrs
    class TestConfig(object):
        replay = attrib(type=List[Replay])
        target = attrib()
        speed = attrib(type=float)

    # reset to set agents from agents_static
    env.reset(False, False)

    if rendering:
        renderer = RenderTool(env, gl="PILSVG")

    test_configs = [
        TestConfig(
            replay=[
                Replay(
                    position=(3, 9),  # east dead-end
                    direction=Grid4TransitionsEnum.EAST,
                    action=RailEnvActions.MOVE_FORWARD
                ),
                Replay(
                    position=(3, 9),
                    direction=Grid4TransitionsEnum.EAST,
                    action=None
                ),
                Replay(
                    position=(3, 8),
                    direction=Grid4TransitionsEnum.WEST,
                    action=RailEnvActions.MOVE_FORWARD
                ),
                Replay(
                    position=(3, 8),
                    direction=Grid4TransitionsEnum.WEST,
                    action=None
                ),
                Replay(
                    position=(3, 7),
                    direction=Grid4TransitionsEnum.WEST,
                    action=RailEnvActions.MOVE_FORWARD
                ),
                Replay(
                    position=(3, 7),
                    direction=Grid4TransitionsEnum.WEST,
                    action=None
                ),
                Replay(
                    position=(3, 6),
                    direction=Grid4TransitionsEnum.WEST,
                    action=RailEnvActions.MOVE_LEFT
                ),
                Replay(
                    position=(3, 6),
                    direction=Grid4TransitionsEnum.WEST,
                    action=None
                ),
                Replay(
                    position=(4, 6),
                    direction=Grid4TransitionsEnum.SOUTH,
                    action=RailEnvActions.STOP_MOVING
                ),
                Replay(
                    position=(4, 6),
                    direction=Grid4TransitionsEnum.SOUTH,
                    action=RailEnvActions.STOP_MOVING
                ),
                Replay(
                    position=(4, 6),
                    direction=Grid4TransitionsEnum.SOUTH,
                    action=RailEnvActions.MOVE_FORWARD
                ),
                Replay(
                    position=(4, 6),
                    direction=Grid4TransitionsEnum.SOUTH,
                    action=None
                ),
                Replay(
                    position=(5, 6),
                    direction=Grid4TransitionsEnum.SOUTH,
                    action=RailEnvActions.MOVE_FORWARD
                ),

            ],
            target=(3, 0),  # west dead-end
            speed=0.5
        )
    ]

    # TODO test penalties!
    agentStatic: EnvAgentStatic = env.agents_static[0]
    for test_config in test_configs:
        info_dict = {
            'action_required': [True]
        }
        for i, replay in enumerate(test_config.replay):
            if i == 0:
                # set the initial position
                agentStatic.position = replay.position
                agentStatic.direction = replay.direction
                agentStatic.target = test_config.target
                agentStatic.moving = True
                agentStatic.speed_data['speed'] = test_config.speed

                # reset to set agents from agents_static
                env.reset(False, False)

            def _assert(actual, expected, msg):
                assert actual == expected, "[{}] {}:  actual={}, expected={}".format(i, msg, actual, expected)

            agent: EnvAgent = env.agents[0]

            _assert(agent.position, replay.position, 'position')
            _assert(agent.direction, replay.direction, 'direction')

            if replay.action:
                assert info_dict['action_required'][0] == True, "[{}] expecting action_required={}".format(i, True)
                _, _, _, info_dict = env.step({0: replay.action})

            else:
                assert info_dict['action_required'][0] == False, "[{}] expecting action_required={}".format(i, False)
                _, _, _, info_dict = env.step({})

            if rendering:
                renderer.render_env(show=True, show_observations=True)