Skip to content
Snippets Groups Projects
Forked from Flatland / Flatland
1318 commits behind the upstream repository.
Simple_Realistic_Railway_Generator.py 24.74 KiB
import copy
import os
import time
import warnings

import numpy as np

from flatland.core.grid.grid4_utils import mirror
from flatland.core.grid.grid_utils import Vec2dOperations as vec2d
from flatland.core.grid.rail_env_grid import RailEnvTransitions
from flatland.core.transition_map import GridTransitionMap
from flatland.envs.grid4_generators_utils import connect_from_nodes, connect_nodes, connect_rail
from flatland.envs.observations import GlobalObsForRailEnv
from flatland.envs.rail_env import RailEnv
from flatland.envs.rail_generators import RailGenerator, RailGeneratorProduct
from flatland.envs.schedule_generators import sparse_schedule_generator
from flatland.utils.rendertools import RenderTool, AgentRenderVariant


# TODO : remove (reuse existing code!!)
class GripMapOp:
    def min_max_cut(min_v, max_v, v):
        return max(min_v, min(max_v, v))

    def add_rail(width, height, grid_map, pt_from, pt_via, pt_to, bAddRemove=True):
        gRCTrans = np.array([[-1, 0], [0, 1], [1, 0], [0, -1]])  # NESW in RC

        lrcStroke = [[GripMapOp.min_max_cut(0, height - 1, pt_from[0]),
                      GripMapOp.min_max_cut(0, width - 1, pt_from[1])],
                     [GripMapOp.min_max_cut(0, height - 1, pt_via[0]),
                      GripMapOp.min_max_cut(0, width - 1, pt_via[1])],
                     [GripMapOp.min_max_cut(0, height - 1, pt_to[0]),
                      GripMapOp.min_max_cut(0, width - 1, pt_to[1])]]

        rc3Cells = np.array(lrcStroke[:3])  # the 3 cells
        rcMiddle = rc3Cells[1]  # the middle cell which we will update
        bDeadend = np.all(lrcStroke[0] == lrcStroke[2])  # deadend means cell 0 == cell 2

        # get the 2 row, col deltas between the 3 cells, eg [[-1,0],[0,1]] = North, East
        rc2Trans = np.diff(rc3Cells, axis=0)

        # get the direction index for the 2 transitions
        liTrans = []
        for rcTrans in rc2Trans:
            # gRCTrans - rcTrans gives an array of vector differences between our rcTrans
            # and the 4 directions stored in gRCTrans.
            # Where the vector difference is zero, we have a match...
            # np.all detects where the whole row,col vector is zero.
            # argwhere gives the index of the zero vector, ie the direction index
            iTrans = np.argwhere(np.all(gRCTrans - rcTrans == 0, axis=1))
            if len(iTrans) > 0:
                iTrans = iTrans[0][0]
                liTrans.append(iTrans)

        # check that we have two transitions
        if len(liTrans) == 2:
            # Set the transition
            # Set the transition
            # If this transition spans 3 cells, it is not a deadend, so remove any deadends.
            # The user will need to resolve any conflicts.
            grid_map.set_transition((*rcMiddle, liTrans[0]),
                                    liTrans[1],
                                    bAddRemove,
                                    remove_deadends=not bDeadend)

            # Also set the reverse transition
            # use the reversed outbound transition for inbound
            # and the reversed inbound transition for outbound
            grid_map.set_transition((*rcMiddle, mirror(liTrans[1])),
                                    mirror(liTrans[0]), bAddRemove, remove_deadends=not bDeadend)


def realistic_rail_generator(num_cities=5,
                             city_size=10,
                             allowed_rotation_angles=[0, 90],
                             max_number_of_station_tracks=4,
                             nbr_of_switches_per_station_track=2,
                             connect_max_nbr_of_shortes_city=4,
                             do_random_connect_stations=False,
                             seed=0,
                             print_out_info=True) -> RailGenerator:
    """
    This is a level generator which generates a realistic rail configurations

    :param num_cities: Number of city node
    :param city_size: Length of city measure in cells
    :param allowed_rotation_angles: Rotate the city (around center)
    :param max_number_of_station_tracks: max number of tracks per station
    :param nbr_of_switches_per_station_track: number of switches per track (max)
    :param connect_max_nbr_of_shortes_city: max number of connecting track between stations
    :param do_random_connect_stations : if false connect the stations along the grid (top,left -> down,right), else rand
    :param seed: Random Seed
    :print_out_info : print debug info
    :return:
        -------
    numpy.ndarray of type numpy.uint16
        The matrix with the correct 16-bit bitmaps for each cell.
    """

    def do_generate_city_locations(width, height, intern_city_size, intern_max_number_of_station_tracks):

        X = int(np.floor(max(1, height - 2 * intern_max_number_of_station_tracks - 1) / intern_city_size))
        Y = int(np.floor(max(1, width - 2 * intern_max_number_of_station_tracks - 1) / intern_city_size))

        max_num_cities = min(num_cities, X * Y)

        cities_at = np.random.choice(X * Y, max_num_cities, False)
        cities_at = np.sort(cities_at)
        if print_out_info:
            print("max nbr of cities with given configuration is:", max_num_cities)

        x = np.floor(cities_at / Y)
        y = cities_at - x * Y
        xs = (x * intern_city_size + intern_max_number_of_station_tracks) + intern_city_size / 2
        ys = (y * intern_city_size + intern_max_number_of_station_tracks) + intern_city_size / 2

        generate_city_locations = [[(int(xs[i]), int(ys[i])), (int(xs[i]), int(ys[i]))] for i in range(len(xs))]
        return generate_city_locations, max_num_cities

    def do_orient_cities(generate_city_locations, intern_city_size, allowed_rotation_angles):
        for i in range(len(generate_city_locations)):
            # station main orientation  (horizontal or vertical
            rot_angle = np.random.choice(allowed_rotation_angles)
            add_pos_val = vec2d.scale_pos(vec2d.rotate_pos((1, 0), rot_angle),
                                                    (max(1, (intern_city_size - 3) / 2)))
            generate_city_locations[i][0] = vec2d.add_pos(generate_city_locations[i][1], add_pos_val)
            add_pos_val = vec2d.scale_pos(vec2d.rotate_pos((1, 0), 180 + rot_angle),
                                                    (max(1, (intern_city_size - 3) / 2)))
            generate_city_locations[i][1] = vec2d.add_pos(generate_city_locations[i][1], add_pos_val)
        return generate_city_locations

    def create_stations_from_city_locations(rail_trans, rail_array, generate_city_locations,
                                            intern_max_number_of_station_tracks):
        nodes_added = []
        start_nodes_added = [[] for i in range(len(generate_city_locations))]
        end_nodes_added = [[] for i in range(len(generate_city_locations))]
        station_slots = [[] for i in range(len(generate_city_locations))]
        station_tracks = [[[] for j in range(intern_max_number_of_station_tracks)] for i in range(len(
            generate_city_locations))]

        station_slots_cnt = 0

        for city_loop in range(len(generate_city_locations)):
            # Connect train station to the correct node
            number_of_connecting_tracks = np.random.choice(max(0, intern_max_number_of_station_tracks)) + 1
            for ct in range(number_of_connecting_tracks):
                org_start_node = generate_city_locations[city_loop][0]
                org_end_node = generate_city_locations[city_loop][1]

                ortho_trans = vec2d.make_orthogonal_pos(
                    vec2d.normalize_pos(vec2d.subtract_pos(org_start_node, org_end_node)))
                s = (ct - number_of_connecting_tracks / 2.0)
                start_node = vec2d.ceil_pos(
                    vec2d.add_pos(org_start_node, vec2d.scale_pos(ortho_trans, s)))
                end_node = vec2d.ceil_pos(
                    vec2d.add_pos(org_end_node, vec2d.scale_pos(ortho_trans, s)))

                connection = connect_from_nodes(rail_trans, rail_array, start_node, end_node)
                if len(connection) > 0:
                    nodes_added.append(start_node)
                    nodes_added.append(end_node)

                    start_nodes_added[city_loop].append(start_node)
                    end_nodes_added[city_loop].append(end_node)

                    # place in the center of path a station slot
                    station_slots[city_loop].append(connection[int(np.floor(len(connection) / 2))])
                    station_slots_cnt += 1

                    station_tracks[city_loop][ct] = connection

        if print_out_info:
            print("max nbr of station slots with given configuration is:", station_slots_cnt)

        return nodes_added, station_slots, start_nodes_added, end_nodes_added, station_tracks

    def create_switches_at_stations(rail_trans, rail_array, width, height, grid_map, station_tracks, nodes_added,
                                    intern_nbr_of_switches_per_station_track):

        for city_loop in range(len(station_tracks)):
            datas = station_tracks[city_loop]
            if len(datas)>1:
                a = datas[0]
                b = []
                for i in range(len(datas)):
                    tmp = datas[i]
                    if len(tmp)>0:
                        b = tmp
                start_node = a[min(2,len(a))]
                end_node = b[len(b)-1]
                rail_array[start_node] = 0
                rail_array[end_node] = 0
                connection = connect_from_nodes(rail_trans, rail_array, start_node, end_node)
                if len(connection) > 0:
                    nodes_added.append(start_node)
                    nodes_added.append(end_node)
        return nodes_added

    def calc_nbr_of_graphs(graph):
        for i in range(len(graph)):
            for j in range(len(graph)):
                a = graph[i]
                b = graph[j]
                connected = False
                if a[0] == b[0] or a[1] == b[0]:
                    connected = True
                if a[0] == b[1] or a[1] == b[1]:
                    connected = True

                if connected:
                    a = [graph[i][0], graph[i][1], graph[i][2]]
                    b = [graph[j][0], graph[j][1], graph[j][2]]
                    graph[i] = (graph[i][0], graph[i][1], min(np.min(a), np.min(b)))
                    graph[j] = (graph[j][0], graph[j][1], min(np.min(a), np.min(b)))
                else:
                    a = [graph[i][0], graph[i][1], graph[i][2]]
                    graph[i] = (graph[i][0], graph[i][1], np.min(a))
                    b = [graph[j][0], graph[j][1], graph[j][2]]
                    graph[j] = (graph[j][0], graph[j][1], np.min(b))

        graph_ids = []
        for i in range(len(graph)):
            graph_ids.append(graph[i][2])
        if print_out_info:
            print("************* NBR of graphs:", len(np.unique(graph_ids)))
        return graph, np.unique(graph_ids).astype(int)

    def connect_sub_graphs(rail_trans, rail_array, org_s_nodes, org_e_nodes, city_edges, nodes_added):
        _, graphids = calc_nbr_of_graphs(city_edges)
        if len(graphids) > 0:
            for i in range(len(graphids) - 1):
                connection = []
                cnt = 0
                while len(connection) == 0 and cnt < 100:
                    s_nodes = copy.deepcopy(org_s_nodes)
                    e_nodes = copy.deepcopy(org_e_nodes)
                    start_nodes = s_nodes[graphids[i]]
                    end_nodes = e_nodes[graphids[i + 1]]
                    start_node = start_nodes[np.random.choice(len(start_nodes))]
                    end_node = end_nodes[np.random.choice(len(end_nodes))]
                    # TODO : removing, what the hell is going on, why we have to set rail_array -> transition to zero
                    # TODO : before we can call connect_rail. If we don't reset the transistion to zero -> no rail
                    # TODO : will be generated.
                    rail_array[start_node] = 0
                    rail_array[end_node] = 0
                    connection = connect_rail(rail_trans, rail_array, start_node, end_node)
                    if len(connection) > 0:
                        nodes_added.append(start_node)
                        nodes_added.append(end_node)
                    cnt += 1

    def connect_stations(rail_trans, rail_array, org_s_nodes, org_e_nodes, nodes_added,
                         inter_connect_max_nbr_of_shortes_city):

        city_edges = []

        s_nodes = copy.deepcopy(org_s_nodes)
        e_nodes = copy.deepcopy(org_e_nodes)

        for k in range(inter_connect_max_nbr_of_shortes_city):
            for city_loop in range(len(s_nodes)):
                sns = s_nodes[city_loop]
                for start_node in sns:
                    min_distance = np.inf
                    end_node = None
                    for city_loop_find_shortest in range(len(e_nodes)):
                        if city_loop_find_shortest == city_loop:
                            continue
                        ens = e_nodes[city_loop_find_shortest]
                        for en in ens:
                            d = vec2d.get_norm_pos(vec2d.subtract_pos(en, start_node))
                            if d < min_distance:
                                min_distance = d
                                end_node = en
                                cl = city_loop_find_shortest

                    if end_node is not None:
                        tmp_trans_sn = rail_array[start_node]
                        tmp_trans_en = rail_array[end_node]
                        rail_array[start_node] = 0
                        rail_array[end_node] = 0
                        connection = connect_rail(rail_trans, rail_array, start_node, end_node)
                        if len(connection) > 0:
                            s_nodes[city_loop].remove(start_node)
                            e_nodes[cl].remove(end_node)
                            a = (city_loop, cl, np.inf)
                            if city_loop > cl:
                                a = (cl, city_loop, np.inf)
                            if not (a in city_edges):
                                city_edges.append(a)
                            nodes_added.append(start_node)
                            nodes_added.append(end_node)
                        else:
                            rail_array[start_node] = tmp_trans_sn
                            rail_array[end_node] = tmp_trans_en

        connect_sub_graphs(rail_trans, rail_array, org_s_nodes, org_e_nodes, city_edges, nodes_added)

    def connect_random_stations(rail_trans, rail_array, start_nodes_added, end_nodes_added, nodes_added,
                                inter_connect_max_nbr_of_shortes_city):
        x = np.arange(len(start_nodes_added))
        random_city_idx = np.random.choice(x, len(x), False)

        # cyclic connection
        random_city_idx = np.append(random_city_idx, random_city_idx[0])

        for city_loop in range(len(random_city_idx) - 1):
            idx_a = random_city_idx[city_loop + 1]
            idx_b = random_city_idx[city_loop]
            s_nodes = start_nodes_added[idx_a]
            e_nodes = end_nodes_added[idx_b]

            max_input_output = max(len(s_nodes), len(e_nodes))
            max_input_output = min(inter_connect_max_nbr_of_shortes_city, max_input_output)

            if do_random_connect_stations:
                idx_s_nodes = np.random.choice(np.arange(len(s_nodes)), len(s_nodes), False)
                idx_e_nodes = np.random.choice(np.arange(len(e_nodes)), len(e_nodes), False)
            else:
                idx_s_nodes = np.arange(len(s_nodes))
                idx_e_nodes = np.arange(len(e_nodes))

            if len(idx_s_nodes) < max_input_output:
                idx_s_nodes = np.append(idx_s_nodes, np.random.choice(np.arange(len(s_nodes)), max_input_output - len(
                    idx_s_nodes)))
            if len(idx_e_nodes) < max_input_output:
                idx_e_nodes = np.append(idx_e_nodes,
                                        np.random.choice(np.arange(len(idx_e_nodes)), max_input_output - len(
                                            idx_e_nodes)))

            if len(idx_s_nodes) > inter_connect_max_nbr_of_shortes_city:
                idx_s_nodes = np.random.choice(idx_s_nodes, inter_connect_max_nbr_of_shortes_city, False)
            if len(idx_e_nodes) > inter_connect_max_nbr_of_shortes_city:
                idx_e_nodes = np.random.choice(idx_e_nodes, inter_connect_max_nbr_of_shortes_city, False)

            for i in range(max_input_output):
                start_node = s_nodes[idx_s_nodes[i]]
                end_node = e_nodes[idx_e_nodes[i]]
                new_trans = rail_array[start_node] = 0
                new_trans = rail_array[end_node] = 0
                connection = connect_nodes(rail_trans, rail_array, start_node, end_node)
                if len(connection) > 0:
                    nodes_added.append(start_node)
                    nodes_added.append(end_node)

    def generator(width, height, num_agents, num_resets=0) -> RailGeneratorProduct:
        rail_trans = RailEnvTransitions()
        grid_map = GridTransitionMap(width=width, height=height, transitions=rail_trans)
        rail_array = grid_map.grid
        rail_array.fill(0)
        np.random.seed(seed + num_resets)

        intern_city_size = city_size
        if city_size < 3:
            warnings.warn("min city_size requried to be > 3!")
            intern_city_size = 3
        if print_out_info:
            print("intern_city_size:", intern_city_size)

        intern_max_number_of_station_tracks = max_number_of_station_tracks
        if max_number_of_station_tracks < 1:
            warnings.warn("min max_number_of_station_tracks requried to be > 1!")
            intern_max_number_of_station_tracks = 1
        if print_out_info:
            print("intern_max_number_of_station_tracks:", intern_max_number_of_station_tracks)

        intern_nbr_of_switches_per_station_track = nbr_of_switches_per_station_track
        if nbr_of_switches_per_station_track < 1:
            warnings.warn("min intern_nbr_of_switches_per_station_track requried to be > 2!")
            intern_nbr_of_switches_per_station_track = 2
        if print_out_info:
            print("intern_nbr_of_switches_per_station_track:", intern_nbr_of_switches_per_station_track)

        inter_connect_max_nbr_of_shortes_city = connect_max_nbr_of_shortes_city
        if connect_max_nbr_of_shortes_city < 1:
            warnings.warn("min inter_connect_max_nbr_of_shortes_city requried to be > 1!")
            inter_connect_max_nbr_of_shortes_city = 1
        if print_out_info:
            print("inter_connect_max_nbr_of_shortes_city:", inter_connect_max_nbr_of_shortes_city)

        agent_start_targets_nodes = []

        # ----------------------------------------------------------------------------------
        # generate city locations
        generate_city_locations, max_num_cities = do_generate_city_locations(width, height, intern_city_size,
                                                                             intern_max_number_of_station_tracks)

        # ----------------------------------------------------------------------------------
        # apply orientation to cities (horizontal, vertical)
        generate_city_locations = do_orient_cities(generate_city_locations, intern_city_size, allowed_rotation_angles)

        # ----------------------------------------------------------------------------------
        # generate city topology
        nodes_added, train_stations, s_nodes, e_nodes, station_tracks = \
            create_stations_from_city_locations(rail_trans, rail_array,
                                                generate_city_locations,
                                                intern_max_number_of_station_tracks)
        # build switches
        # TODO remove true/false block
        if True:
            create_switches_at_stations(rail_trans, rail_array, width, height, grid_map, station_tracks, nodes_added,
                                        intern_nbr_of_switches_per_station_track)

        # ----------------------------------------------------------------------------------
        # connect stations
        # TODO remove true/false block
        if False:
            if do_random_connect_stations:
                connect_random_stations(rail_trans, rail_array, s_nodes, e_nodes, nodes_added,
                                        inter_connect_max_nbr_of_shortes_city)
            else:
                connect_stations(rail_trans, rail_array, s_nodes, e_nodes, nodes_added,
                                 inter_connect_max_nbr_of_shortes_city)

        # ----------------------------------------------------------------------------------
        # fix all transition at starting / ending points (mostly add a dead end, if missing)
        # TODO i would like to remove the fixing stuff.
        for i in range(len(nodes_added)):
            grid_map.fix_transitions(nodes_added[i])

        # ----------------------------------------------------------------------------------
        # Slot availability in node
        node_available_start = []
        node_available_target = []
        for node_idx in range(max_num_cities):
            node_available_start.append(len(train_stations[node_idx]))
            node_available_target.append(len(train_stations[node_idx]))

        # Assign agents to slots
        for agent_idx in range(num_agents):
            avail_start_nodes = [idx for idx, val in enumerate(node_available_start) if val > 0]
            avail_target_nodes = [idx for idx, val in enumerate(node_available_target) if val > 0]
            if len(avail_target_nodes) == 0:
                num_agents -= 1
                continue
            start_node = np.random.choice(avail_start_nodes)
            target_node = np.random.choice(avail_target_nodes)
            tries = 0
            found_agent_pair = True
            while target_node == start_node:
                target_node = np.random.choice(avail_target_nodes)
                tries += 1
                # Test again with new start node if no pair is found (This code needs to be improved)
                if (tries + 1) % 10 == 0:
                    start_node = np.random.choice(avail_start_nodes)
                if tries > 100:
                    warnings.warn("Could not set trainstations, removing agent!")
                    found_agent_pair = False
                    break
            if found_agent_pair:
                node_available_start[start_node] -= 1
                node_available_target[target_node] -= 1
                agent_start_targets_nodes.append((start_node, target_node))
            else:
                num_agents -= 1

        return grid_map, {'agents_hints': {
            'num_agents': num_agents,
            'agent_start_targets_nodes': agent_start_targets_nodes,
            'train_stations': train_stations
        }}

    return generator


for itrials in range(1000):
    print(itrials, "generate new city")
    np.random.seed(0*int(time.time()))
    env = RailEnv(width=40 + np.random.choice(100),
                  height=40 + np.random.choice(100),
                  rail_generator=realistic_rail_generator(num_cities=2 + np.random.choice(10),
                                                          city_size=10 + np.random.choice(10),
                                                          allowed_rotation_angles=[-90, -45, 0, 45, 90],
                                                          max_number_of_station_tracks=np.random.choice(4) + 4,
                                                          nbr_of_switches_per_station_track=np.random.choice(4) + 2,
                                                          connect_max_nbr_of_shortes_city=np.random.choice(4) + 2,
                                                          do_random_connect_stations=np.random.choice(1) == 0,
                                                          # Number of cities in map
                                                          seed=int(time.time()),  # Random seed
                                                          print_out_info=False
                                                          ),
                  schedule_generator=sparse_schedule_generator(),
                  number_of_agents=1 + np.random.choice(10),
                  obs_builder_object=GlobalObsForRailEnv())

    # reset to initialize agents_static
    env_renderer = RenderTool(env, gl="PILSVG", screen_width=1400, screen_height=1000,
                              agent_render_variant=AgentRenderVariant.AGENT_SHOWS_OPTIONS_AND_BOX)
    cnt = 0
    while cnt < 10:
        env_renderer.render_env(show=True, show_observations=False, show_predictions=False)
        cnt += 1

    env_renderer.gl.save_image(
        os.path.join(
            "./../render_output/",
            "flatland_frame_{:04d}_{:04d}.png".format(itrials, 0)
        ))

    input()
    env_renderer.close_window()