Newer
Older
from flatland.envs.generators import complex_rail_generator
from flatland.envs.observations import TreeObsForRailEnv, LocalObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv
from flatland.utils.rendertools import RenderTool
np.random.seed(1)
# Use the complex_rail_generator to generate feasible network configurations with corresponding tasks
# Training on simple small tasks is the best way to get familiar with the environment
Erik Nygren
committed
TreeObservation = TreeObsForRailEnv(max_depth=2, predictor=ShortestPathPredictorForRailEnv())
LocalGridObs = LocalObsForRailEnv(view_height=10, view_width=2, center=2)
Erik Nygren
committed
env = RailEnv(width=20,
height=20,
Erik Nygren
committed
rail_generator=complex_rail_generator(nr_start_goal=10, nr_extra=1, min_dist=8, max_dist=99999, seed=0),
Erik Nygren
committed
obs_builder_object=TreeObservation,
Erik Nygren
committed
number_of_agents=3)
env_renderer = RenderTool(env, gl="PILSVG", )
# Import your own Agent or use RLlib to train agents on Flatland
# As an example we use a random agent here
class RandomAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
def act(self, state):
"""
:param state: input is the observation of the agent
:return: returns an action
"""
return np.random.choice(np.arange(self.action_size))
def step(self, memories):
"""
Step function to improve agent by adjusting policy given the observations
:param memories: SARS Tuple to be
:return:
"""
return
def save(self, filename):
# Store the current policy
return
# Load a policy
return
# Initialize the agent with the parameters corresponding to the environment and observation_builder
agent = RandomAgent(218, 4)
# Empty dictionary for all agent action
action_dict = dict()
Erik Nygren
committed
for trials in range(1, n_trials + 1):
# Reset environment and get initial observations for all agents
obs = env.reset()
Erik Nygren
committed
for idx in range(env.get_num_agents()):
tmp_agent = env.agents[idx]
tmp_agent.speed_data["speed"] = 1 / (idx + 1)
env_renderer.reset()
# Here you can also further enhance the provided observation by means of normalization
# See training navigation example in the baseline repository
score = 0
# Run episode
for step in range(100):
# Chose an action for each agent in the environment
for a in range(env.get_num_agents()):
action = agent.act(obs[a])
action_dict.update({a: action})
# Environment step which returns the observations for all agents, their corresponding
# reward and whether their are done
next_obs, all_rewards, done, _ = env.step(action_dict)
Erik Nygren
committed
env_renderer.render_env(show=True, show_observations=True, show_predictions=False)
# Update replay buffer and train agent
for a in range(env.get_num_agents()):
agent.step((obs[a], action_dict[a], all_rewards[a], next_obs[a], done[a]))
score += all_rewards[a]
obs = next_obs.copy()
if done['__all__']:
break