Skip to content
Snippets Groups Projects
test_env_prediction_builder.py 11.2 KiB
Newer Older
u214892's avatar
u214892 committed
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np

from flatland.core.transition_map import GridTransitionMap, Grid4Transitions
from flatland.core.transitions import Grid4TransitionsEnum
u214892's avatar
u214892 committed
from flatland.envs.generators import rail_from_GridTransitionMap_generator
u214892's avatar
u214892 committed
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import DummyPredictorForRailEnv, ShortestPathPredictorForRailEnv
u214892's avatar
u214892 committed
from flatland.envs.rail_env import RailEnv
from flatland.envs.rail_env import RailEnvActions
from flatland.utils.rendertools import RenderTool
u214892's avatar
u214892 committed

u214892's avatar
u214892 committed
"""Test predictions for `flatland` package."""
u214892's avatar
u214892 committed


def make_simple_rail():
u214892's avatar
u214892 committed
    # We instantiate a very simple rail network on a 7x10 grid:
    #        |
    #        |
    #        |
    # _ _ _ /_\ _ _  _  _ _ _
    #               \ /
    #                |
    #                |
    #                |
    cells = [int('0000000000000000', 2),  # empty cell - Case 0
             int('1000000000100000', 2),  # Case 1 - straight
             int('1001001000100000', 2),  # Case 2 - simple switch
             int('1000010000100001', 2),  # Case 3 - diamond drossing
             int('1001011000100001', 2),  # Case 4 - single slip switch
             int('1100110000110011', 2),  # Case 5 - double slip switch
             int('0101001000000010', 2),  # Case 6 - symmetrical switch
             int('0010000000000000', 2)]  # Case 7 - dead end
    transitions = Grid4Transitions([])
    empty = cells[0]
    dead_end_from_south = cells[7]
    dead_end_from_west = transitions.rotate_transition(dead_end_from_south, 90)
    dead_end_from_north = transitions.rotate_transition(dead_end_from_south, 180)
    dead_end_from_east = transitions.rotate_transition(dead_end_from_south, 270)
    vertical_straight = cells[1]
    horizontal_straight = transitions.rotate_transition(vertical_straight, 90)
    double_switch_south_horizontal_straight = horizontal_straight + cells[6]
    double_switch_north_horizontal_straight = transitions.rotate_transition(
        double_switch_south_horizontal_straight, 180)
    rail_map = np.array(
        [[empty] * 3 + [dead_end_from_south] + [empty] * 6] +
        [[empty] * 3 + [vertical_straight] + [empty] * 6] * 2 +
        [[dead_end_from_east] + [horizontal_straight] * 2 +
         [double_switch_north_horizontal_straight] +
         [horizontal_straight] * 2 + [double_switch_south_horizontal_straight] +
         [horizontal_straight] * 2 + [dead_end_from_west]] +
        [[empty] * 6 + [vertical_straight] + [empty] * 3] * 2 +
        [[empty] * 6 + [dead_end_from_north] + [empty] * 3], dtype=np.uint16)
    rail = GridTransitionMap(width=rail_map.shape[1],
                             height=rail_map.shape[0], transitions=transitions)
    rail.grid = rail_map
    return rail, rail_map


def test_dummy_predictor(rendering=False):
    rail, rail_map = make_simple_rail()

u214892's avatar
u214892 committed
    env = RailEnv(width=rail_map.shape[1],
                  height=rail_map.shape[0],
                  rail_generator=rail_from_GridTransitionMap_generator(rail),
                  number_of_agents=1,
u214892's avatar
u214892 committed
                  obs_builder_object=TreeObsForRailEnv(max_depth=2, predictor=DummyPredictorForRailEnv(max_depth=10)),
u214892's avatar
u214892 committed
                  )
    env.reset()

u214892's avatar
u214892 committed
    # set initial position and direction for testing...
    env.agents[0].position = (5, 6)
    env.agents[0].direction = 0
    env.agents[0].target = (3, 0)

    if rendering:
        renderer = RenderTool(env, gl="PILSVG")
        renderer.renderEnv(show=True, show_observations=False)
        input("Continue?")
u214892's avatar
u214892 committed

    # test assertions
    predictions = env.obs_builder.predictor.get(None)
    positions = np.array(list(map(lambda prediction: [*prediction[1:3]], predictions[0])))
u214892's avatar
u214892 committed
    directions = np.array(list(map(lambda prediction: [prediction[3]], predictions[0])))
    time_offsets = np.array(list(map(lambda prediction: [prediction[0]], predictions[0])))
    actions = np.array(list(map(lambda prediction: [prediction[4]], predictions[0])))

    # compare against expected values
    expected_positions = np.array([[5., 6.],
                                   [4., 6.],
                                   [3., 6.],
                                   [3., 5.],
                                   [3., 4.],
                                   [3., 3.],
                                   [3., 2.],
                                   [3., 1.],
                                   # at target (3,0): stay in this position from here on
u214892's avatar
u214892 committed
                                   [3., 0.],
                                   [3., 0.],
                                   [3., 0.],
                                   ])
u214892's avatar
u214892 committed
    expected_directions = np.array([[0.],
                                    [0.],
                                    [0.],
                                    [3.],
                                    [3.],
                                    [3.],
                                    [3.],
                                    [3.],
                                    # at target (3,0): stay in this position from here on
u214892's avatar
u214892 committed
                                    [3.],
                                    [3.],
u214892's avatar
u214892 committed
    expected_time_offsets = np.array([[0.],
                                      [1.],
                                      [2.],
                                      [3.],
                                      [4.],
                                      [5.],
                                      [6.],
                                      [7.],
                                      [8.],
                                      [9.],
                                      [10.],
u214892's avatar
u214892 committed
    expected_actions = np.array([[0.],
                                 [2.],
                                 [2.],
                                 [1.],
                                 [2.],
                                 [2.],
                                 [2.],
                                 [2.],
                                 # reaching target by straight
u214892's avatar
u214892 committed
                                 [2.],
                                 # at target: stopped moving
                                 [4.],
                                 [4.],
                                 ])
u214892's avatar
u214892 committed
    assert np.array_equal(positions, expected_positions)
    assert np.array_equal(directions, expected_directions)
    assert np.array_equal(time_offsets, expected_time_offsets)
    assert np.array_equal(actions, expected_actions)
u214892's avatar
u214892 committed


def test_shortest_path_predictor(rendering=False):
    rail, rail_map = make_simple_rail()
    env = RailEnv(width=rail_map.shape[1],
                  height=rail_map.shape[0],
                  rail_generator=rail_from_GridTransitionMap_generator(rail),
                  number_of_agents=1,
                  obs_builder_object=TreeObsForRailEnv(max_depth=2, predictor=ShortestPathPredictorForRailEnv()),
                  )
    env.reset()

    agent = env.agents[0]
    agent.position = (5, 6)  # south dead-end
    agent.direction = 0  # north
    agent.target = (3, 9)  # east dead-end

    agent.moving = True

    if rendering:
        renderer = RenderTool(env, gl="PILSVG")
        renderer.renderEnv(show=True, show_observations=False)

    agent = env.agents[0]
    assert agent.position == (5, 6)
    assert agent.direction == 0
    assert agent.target == (3, 9)
    assert agent.moving

    env.obs_builder._compute_distance_map()

    distance_map = env.obs_builder.distance_map
    assert distance_map[agent.handle, agent.position[0], agent.position[
        1], agent.direction] == 5.0, "found {} instead of {}".format(
        distance_map[agent.handle, agent.position[0], agent.position[1], agent.direction], 5.0)

    # test assertions
    env.obs_builder.get_many()
    predictions = env.obs_builder.predictions
    positions = np.array(list(map(lambda prediction: [*prediction[1:3]], predictions[0])))
    directions = np.array(list(map(lambda prediction: [prediction[3]], predictions[0])))
    time_offsets = np.array(list(map(lambda prediction: [prediction[0]], predictions[0])))
    actions = np.array(list(map(lambda prediction: [prediction[4]], predictions[0])))

    expected_positions = [
        [5, 6],
        [4, 6],
        [3, 6],
        [3, 7],
        [3, 8],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
        [3, 9],
    ]
    expected_directions = [
        [Grid4TransitionsEnum.NORTH],  # next is [5,6] heading north
        [Grid4TransitionsEnum.NORTH],  # next is [4,6] heading north
        [Grid4TransitionsEnum.NORTH],  # next is [3,6] heading north
        [Grid4TransitionsEnum.EAST],  # next is [3,7] heading east
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
        [Grid4TransitionsEnum.EAST],
    ]

    expected_time_offsets = np.array([
        [0.],
        [1.],
        [2.],
        [3.],
        [4.],
        [5.],
        [6.],
        [7.],
        [8.],
        [9.],
        [10.],
        [11.],
        [12.],
        [13.],
        [14.],
        [15.],
        [16.],
        [17.],
        [18.],
        [19.],
        [20.],
    ])
u214892's avatar
u214892 committed

    expected_actions = np.array([
        [RailEnvActions.DO_NOTHING],  # next [5,6]
        [RailEnvActions.MOVE_FORWARD],  # next [4,6]
        [RailEnvActions.MOVE_FORWARD],  # next [3,6]
        [RailEnvActions.MOVE_RIGHT],  # next [3,7]
        [RailEnvActions.MOVE_FORWARD],  # next [3,8]
        [RailEnvActions.MOVE_FORWARD],  # next [3,9]
        [RailEnvActions.STOP_MOVING],  # at [3,9] == target
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
        [RailEnvActions.STOP_MOVING],
    ])
u214892's avatar
u214892 committed

    assert np.array_equal(positions, expected_positions), \
        "positions {}, expected {}".format(positions, expected_positions)
    assert np.array_equal(directions, expected_directions), \
        "directions {}, expected {}".format(directions, expected_directions)
    assert np.array_equal(time_offsets, expected_time_offsets), \
        "time_offsets {}, expected {}".format(time_offsets, expected_time_offsets)
    assert np.array_equal(actions, expected_actions), \
        "actions {}, expected {}".format(actions, expected_actions)