Newer
Older
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""The setup script."""
spmohanty
committed
import os
import sys
Egli Adrian (IT-SCI-API-PFI)
committed
from setuptools import setup, find_packages
Egli Adrian (IT-SCI-API-PFI)
committed
def get_all_svg_files(directory='./svg/'):
ret = []
for dirpath, subdirs, files in os.walk(directory):
for f in files:
ret.append(os.path.join(dirpath, f))
Egli Adrian (IT-SCI-API-PFI)
committed
return ret
def get_all_images_files(directory='./images/'):
ret = []
for dirpath, subdirs, files in os.walk(directory):
for f in files:
ret.append(os.path.join(dirpath, f))
def get_all_notebook_files(directory='./notebooks/'):
ret = []
for dirpath, subdirs, files in os.walk(directory):
for f in files:
ret.append(os.path.join(dirpath, f))
spmohanty
committed
# Gather requirements from requirements_dev.txt
install_reqs = []
requirements_path = 'requirements_dev.txt'
with open(requirements_path, 'r') as f:
install_reqs += [
s for s in [
line.strip(' \n') for line in f
] if not s.startswith('#') and s != ''
]
requirements = install_reqs
setup_requirements = install_reqs
test_requirements = install_reqs
setup(
author="S.P. Mohanty",
author_email='mohanty@aicrowd.com',
classifiers=[
'Intended Audience :: Developers',
'Natural Language :: English',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
],
description="Multi Agent Reinforcement Learning on Trains",
entry_points={
'console_scripts': [
'flatland-demo=flatland.cli:demo',
'flatland-evaluator=flatland.cli:evaluator'
long_description_content_type="text/markdown",
data_files=[('svg', get_all_svg_files()),
('images', get_all_images_files()),
('notebooks', get_all_notebook_files())],
setup_requires=setup_requirements,
test_suite='tests',
tests_require=test_requirements,
url='https://gitlab.aicrowd.com/flatland/flatland',