Skip to content
Snippets Groups Projects
Commit fc423a42 authored by Erik Nygren's avatar Erik Nygren
Browse files

Added inference File to look at agent behavior after training

parent 63962c33
No related branches found
No related tags found
No related merge requests found
import random
from collections import deque
import numpy as np
import torch
from flatland.envs.generators import complex_rail_generator
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv
from flatland.utils.rendertools import RenderTool
from importlib_resources import path
import torch_training.Nets
from torch_training.dueling_double_dqn import Agent
from utils.observation_utils import norm_obs_clip, split_tree
random.seed(1)
np.random.seed(1)
"""
file_name = "./railway/complex_scene.pkl"
env = RailEnv(width=10,
height=20,
rail_generator=rail_from_file(file_name),
obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()))
x_dim = env.width
y_dim = env.height
"""
x_dim = np.random.randint(8, 20)
y_dim = np.random.randint(8, 20)
n_agents = np.random.randint(3, 8)
n_goals = n_agents + np.random.randint(0, 3)
min_dist = int(0.75 * min(x_dim, y_dim))
env = RailEnv(width=x_dim,
height=y_dim,
rail_generator=complex_rail_generator(nr_start_goal=n_goals, nr_extra=5, min_dist=min_dist,
max_dist=99999,
seed=0),
obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()),
number_of_agents=n_agents)
env.reset(True, True)
tree_depth = 3
observation_helper = TreeObsForRailEnv(max_depth=tree_depth, predictor=ShortestPathPredictorForRailEnv())
env_renderer = RenderTool(env, gl="PILSVG", )
handle = env.get_agent_handles()
num_features_per_node = env.obs_builder.observation_dim
nr_nodes = 0
for i in range(tree_depth + 1):
nr_nodes += np.power(4, i)
state_size = num_features_per_node * nr_nodes
action_size = 5
n_trials = 100
max_steps = int(3 * (env.height + env.width))
eps = 1.
eps_end = 0.005
eps_decay = 0.9995
action_dict = dict()
final_action_dict = dict()
scores_window = deque(maxlen=100)
done_window = deque(maxlen=100)
time_obs = deque(maxlen=2)
scores = []
dones_list = []
action_prob = [0] * action_size
agent_obs = [None] * env.get_num_agents()
agent_next_obs = [None] * env.get_num_agents()
agent = Agent(state_size, action_size, "FC", 0)
with path(torch_training.Nets, "avoid_checkpoint2900.pth") as file_in:
agent.qnetwork_local.load_state_dict(torch.load(file_in))
record_images = False
frame_step = 0
for trials in range(1, n_trials + 1):
# Reset environment
obs = env.reset(True, True)
env_renderer.set_new_rail()
for a in range(env.get_num_agents()):
data, distance, agent_data = split_tree(tree=np.array(obs[a]), num_features_per_node=num_features_per_node,
current_depth=0)
data = norm_obs_clip(data)
distance = norm_obs_clip(distance)
agent_data = np.clip(agent_data, -1, 1)
agent_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
# Run episode
for step in range(max_steps):
env_renderer.render_env(show=True, show_observations=False, show_predictions=True)
if record_images:
env_renderer.gl.saveImage("./Images/flatland_frame_{:04d}.bmp".format(frame_step))
frame_step += 1
# Action
for a in range(env.get_num_agents()):
action = agent.act(agent_obs[a], eps=0)
action_dict.update({a: action})
# Environment step
next_obs, all_rewards, done, _ = env.step(action_dict)
for a in range(env.get_num_agents()):
data, distance, agent_data = split_tree(tree=np.array(obs[a]), num_features_per_node=num_features_per_node,
current_depth=0)
data = norm_obs_clip(data)
distance = norm_obs_clip(distance)
agent_data = np.clip(agent_data, -1, 1)
agent_next_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
agent_obs = agent_next_obs.copy()
if done['__all__']:
break
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment