Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
baselines
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
xzhaoma
baselines
Commits
e0a28d85
Commit
e0a28d85
authored
5 years ago
by
u214892
Browse files
Options
Downloads
Patches
Plain Diff
#42 run baselines in ci
parent
a0beb3d3
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
torch_training/multi_agent_training.py
+185
-169
185 additions, 169 deletions
torch_training/multi_agent_training.py
torch_training/training_navigation.py
+4
-5
4 additions, 5 deletions
torch_training/training_navigation.py
with
189 additions
and
174 deletions
torch_training/multi_agent_training.py
+
185
−
169
View file @
e0a28d85
import
getopt
import
sys
from
collections
import
deque
import
matplotlib.pyplot
as
plt
...
...
@@ -15,184 +17,198 @@ from flatland.envs.rail_env import RailEnv
from
flatland.utils.rendertools
import
RenderTool
from
utils.observation_utils
import
norm_obs_clip
,
split_tree
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
"""
env = RailEnv(width=10,
height=20, obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()))
env.load(
"
./railway/complex_scene.pkl
"
)
file_load = True
"""
x_dim
=
np
.
random
.
randint
(
8
,
20
)
y_dim
=
np
.
random
.
randint
(
8
,
20
)
n_agents
=
np
.
random
.
randint
(
3
,
8
)
n_goals
=
n_agents
+
np
.
random
.
randint
(
0
,
3
)
min_dist
=
int
(
0.75
*
min
(
x_dim
,
y_dim
))
env
=
RailEnv
(
width
=
x_dim
,
height
=
y_dim
,
rail_generator
=
complex_rail_generator
(
nr_start_goal
=
n_goals
,
nr_extra
=
5
,
min_dist
=
min_dist
,
max_dist
=
99999
,
seed
=
0
),
obs_builder_object
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
()),
number_of_agents
=
n_agents
)
env
.
reset
(
True
,
True
)
file_load
=
False
"""
"""
observation_helper
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
())
env_renderer
=
RenderTool
(
env
,
gl
=
"
PILSVG
"
,
)
handle
=
env
.
get_agent_handles
()
features_per_node
=
9
state_size
=
features_per_node
*
85
*
2
action_size
=
5
n_trials
=
30000
max_steps
=
int
(
3
*
(
env
.
height
+
env
.
width
))
eps
=
1.
eps_end
=
0.005
eps_decay
=
0.9995
action_dict
=
dict
()
final_action_dict
=
dict
()
scores_window
=
deque
(
maxlen
=
100
)
done_window
=
deque
(
maxlen
=
100
)
time_obs
=
deque
(
maxlen
=
2
)
scores
=
[]
dones_list
=
[]
action_prob
=
[
0
]
*
action_size
agent_obs
=
[
None
]
*
env
.
get_num_agents
()
agent_next_obs
=
[
None
]
*
env
.
get_num_agents
()
agent
=
Agent
(
state_size
,
action_size
,
"
FC
"
,
0
)
with
path
(
torch_training
.
Nets
,
"
avoid_checkpoint30000.pth
"
)
as
file_in
:
agent
.
qnetwork_local
.
load_state_dict
(
torch
.
load
(
file_in
))
demo
=
False
record_images
=
False
frame_step
=
0
for
trials
in
range
(
1
,
n_trials
+
1
):
if
trials
%
50
==
0
and
not
demo
:
x_dim
=
np
.
random
.
randint
(
8
,
20
)
y_dim
=
np
.
random
.
randint
(
8
,
20
)
n_agents
=
np
.
random
.
randint
(
3
,
8
)
n_goals
=
n_agents
+
np
.
random
.
randint
(
0
,
3
)
min_dist
=
int
(
0.75
*
min
(
x_dim
,
y_dim
))
env
=
RailEnv
(
width
=
x_dim
,
height
=
y_dim
,
rail_generator
=
complex_rail_generator
(
nr_start_goal
=
n_goals
,
nr_extra
=
5
,
min_dist
=
min_dist
,
max_dist
=
99999
,
seed
=
0
),
obs_builder_object
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
()),
number_of_agents
=
n_agents
)
env
.
reset
(
True
,
True
)
max_steps
=
int
(
3
*
(
env
.
height
+
env
.
width
))
agent_obs
=
[
None
]
*
env
.
get_num_agents
()
agent_next_obs
=
[
None
]
*
env
.
get_num_agents
()
# Reset environment
if
file_load
:
obs
=
env
.
reset
(
False
,
False
)
else
:
obs
=
env
.
reset
(
True
,
True
)
if
demo
:
env_renderer
.
set_new_rail
()
obs_original
=
obs
.
copy
()
final_obs
=
obs
.
copy
()
final_obs_next
=
obs
.
copy
()
for
a
in
range
(
env
.
get_num_agents
()):
data
,
distance
,
agent_data
=
split_tree
(
tree
=
np
.
array
(
obs
[
a
]),
current_depth
=
0
)
data
=
norm_obs_clip
(
data
)
distance
=
norm_obs_clip
(
distance
)
agent_data
=
np
.
clip
(
agent_data
,
-
1
,
1
)
obs
[
a
]
=
np
.
concatenate
((
np
.
concatenate
((
data
,
distance
)),
agent_data
))
agent_data
=
env
.
agents
[
a
]
speed
=
1
# np.random.randint(1,5)
agent_data
.
speed_data
[
'
speed
'
]
=
1.
/
speed
for
i
in
range
(
2
):
time_obs
.
append
(
obs
)
# env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5)
for
a
in
range
(
env
.
get_num_agents
()):
agent_obs
[
a
]
=
np
.
concatenate
((
time_obs
[
0
][
a
],
time_obs
[
1
][
a
]))
score
=
0
env_done
=
0
# Run episode
for
step
in
range
(
max_steps
):
def
main
(
argv
):
try
:
opts
,
args
=
getopt
.
getopt
(
argv
,
"
n:
"
,
[
"
n_trials=
"
])
except
getopt
.
GetoptError
:
print
(
'
training_navigation.py -n <n_trials>
'
)
sys
.
exit
(
2
)
for
opt
,
arg
in
opts
:
if
opt
in
(
'
-n
'
,
'
--n_trials
'
):
n_trials
=
int
(
arg
)
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
"""
env = RailEnv(width=10,
height=20, obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()))
env.load(
"
./railway/complex_scene.pkl
"
)
file_load = True
"""
x_dim
=
np
.
random
.
randint
(
8
,
20
)
y_dim
=
np
.
random
.
randint
(
8
,
20
)
n_agents
=
np
.
random
.
randint
(
3
,
8
)
n_goals
=
n_agents
+
np
.
random
.
randint
(
0
,
3
)
min_dist
=
int
(
0.75
*
min
(
x_dim
,
y_dim
))
env
=
RailEnv
(
width
=
x_dim
,
height
=
y_dim
,
rail_generator
=
complex_rail_generator
(
nr_start_goal
=
n_goals
,
nr_extra
=
5
,
min_dist
=
min_dist
,
max_dist
=
99999
,
seed
=
0
),
obs_builder_object
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
()),
number_of_agents
=
n_agents
)
env
.
reset
(
True
,
True
)
file_load
=
False
"""
"""
observation_helper
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
())
env_renderer
=
RenderTool
(
env
,
gl
=
"
PILSVG
"
,
)
handle
=
env
.
get_agent_handles
()
features_per_node
=
9
state_size
=
features_per_node
*
85
*
2
action_size
=
5
# We set the number of episodes we would like to train on
if
'
n_trials
'
not
in
locals
():
n_trials
=
30000
max_steps
=
int
(
3
*
(
env
.
height
+
env
.
width
))
eps
=
1.
eps_end
=
0.005
eps_decay
=
0.9995
action_dict
=
dict
()
final_action_dict
=
dict
()
scores_window
=
deque
(
maxlen
=
100
)
done_window
=
deque
(
maxlen
=
100
)
time_obs
=
deque
(
maxlen
=
2
)
scores
=
[]
dones_list
=
[]
action_prob
=
[
0
]
*
action_size
agent_obs
=
[
None
]
*
env
.
get_num_agents
()
agent_next_obs
=
[
None
]
*
env
.
get_num_agents
()
agent
=
Agent
(
state_size
,
action_size
,
"
FC
"
,
0
)
with
path
(
torch_training
.
Nets
,
"
avoid_checkpoint30000.pth
"
)
as
file_in
:
agent
.
qnetwork_local
.
load_state_dict
(
torch
.
load
(
file_in
))
demo
=
False
record_images
=
False
frame_step
=
0
for
trials
in
range
(
1
,
n_trials
+
1
):
if
trials
%
50
==
0
and
not
demo
:
x_dim
=
np
.
random
.
randint
(
8
,
20
)
y_dim
=
np
.
random
.
randint
(
8
,
20
)
n_agents
=
np
.
random
.
randint
(
3
,
8
)
n_goals
=
n_agents
+
np
.
random
.
randint
(
0
,
3
)
min_dist
=
int
(
0.75
*
min
(
x_dim
,
y_dim
))
env
=
RailEnv
(
width
=
x_dim
,
height
=
y_dim
,
rail_generator
=
complex_rail_generator
(
nr_start_goal
=
n_goals
,
nr_extra
=
5
,
min_dist
=
min_dist
,
max_dist
=
99999
,
seed
=
0
),
obs_builder_object
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
()),
number_of_agents
=
n_agents
)
env
.
reset
(
True
,
True
)
max_steps
=
int
(
3
*
(
env
.
height
+
env
.
width
))
agent_obs
=
[
None
]
*
env
.
get_num_agents
()
agent_next_obs
=
[
None
]
*
env
.
get_num_agents
()
# Reset environment
if
file_load
:
obs
=
env
.
reset
(
False
,
False
)
else
:
obs
=
env
.
reset
(
True
,
True
)
if
demo
:
env_renderer
.
renderEnv
(
show
=
True
,
show_observations
=
False
)
# observation_helper.util_print_obs_subtree(obs_original[0])
if
record_images
:
env_renderer
.
gl
.
saveImage
(
"
./Images/flatland_frame_{:04d}.bmp
"
.
format
(
frame_step
))
frame_step
+=
1
# print(step)
# Action
env_renderer
.
set_new_rail
()
obs_original
=
obs
.
copy
()
final_obs
=
obs
.
copy
()
final_obs_next
=
obs
.
copy
()
for
a
in
range
(
env
.
get_num_agents
()):
if
demo
:
eps
=
0
# action = agent.act(np.array(obs[a]), eps=eps)
action
=
agent
.
act
(
agent_obs
[
a
],
eps
=
eps
)
action_prob
[
action
]
+=
1
action_dict
.
update
({
a
:
action
})
# Environment step
next_obs
,
all_rewards
,
done
,
_
=
env
.
step
(
action_dict
)
# print(all_rewards,action)
obs_original
=
next_obs
.
copy
()
for
a
in
range
(
env
.
get_num_agents
()):
data
,
distance
,
agent_data
=
split_tree
(
tree
=
np
.
array
(
next_obs
[
a
]),
data
,
distance
,
agent_data
=
split_tree
(
tree
=
np
.
array
(
obs
[
a
]),
current_depth
=
0
)
data
=
norm_obs_clip
(
data
)
distance
=
norm_obs_clip
(
distance
)
agent_data
=
np
.
clip
(
agent_data
,
-
1
,
1
)
next_obs
[
a
]
=
np
.
concatenate
((
np
.
concatenate
((
data
,
distance
)),
agent_data
))
time_obs
.
append
(
next_obs
)
# Update replay buffer and train agent
obs
[
a
]
=
np
.
concatenate
((
np
.
concatenate
((
data
,
distance
)),
agent_data
))
agent_data
=
env
.
agents
[
a
]
speed
=
1
# np.random.randint(1,5)
agent_data
.
speed_data
[
'
speed
'
]
=
1.
/
speed
for
i
in
range
(
2
):
time_obs
.
append
(
obs
)
# env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5)
for
a
in
range
(
env
.
get_num_agents
()):
agent_next_obs
[
a
]
=
np
.
concatenate
((
time_obs
[
0
][
a
],
time_obs
[
1
][
a
]))
if
done
[
a
]:
final_obs
[
a
]
=
agent_obs
[
a
].
copy
()
final_obs_next
[
a
]
=
agent_next_obs
[
a
].
copy
()
final_action_dict
.
update
({
a
:
action_dict
[
a
]})
if
not
demo
and
not
done
[
a
]:
agent
.
step
(
agent_obs
[
a
],
action_dict
[
a
],
all_rewards
[
a
],
agent_next_obs
[
a
],
done
[
a
])
score
+=
all_rewards
[
a
]
/
env
.
get_num_agents
()
agent_obs
=
agent_next_obs
.
copy
()
if
done
[
'
__all__
'
]:
env_done
=
1
agent_obs
[
a
]
=
np
.
concatenate
((
time_obs
[
0
][
a
],
time_obs
[
1
][
a
]))
score
=
0
env_done
=
0
# Run episode
for
step
in
range
(
max_steps
):
if
demo
:
env_renderer
.
renderEnv
(
show
=
True
,
show_observations
=
False
)
# observation_helper.util_print_obs_subtree(obs_original[0])
if
record_images
:
env_renderer
.
gl
.
saveImage
(
"
./Images/flatland_frame_{:04d}.bmp
"
.
format
(
frame_step
))
frame_step
+=
1
# print(step)
# Action
for
a
in
range
(
env
.
get_num_agents
()):
if
demo
:
eps
=
0
# action = agent.act(np.array(obs[a]), eps=eps)
action
=
agent
.
act
(
agent_obs
[
a
],
eps
=
eps
)
action_prob
[
action
]
+=
1
action_dict
.
update
({
a
:
action
})
# Environment step
next_obs
,
all_rewards
,
done
,
_
=
env
.
step
(
action_dict
)
# print(all_rewards,action)
obs_original
=
next_obs
.
copy
()
for
a
in
range
(
env
.
get_num_agents
()):
agent
.
step
(
final_obs
[
a
],
final_action_dict
[
a
],
all_rewards
[
a
],
final_obs_next
[
a
],
done
[
a
])
break
# Epsilon decay
eps
=
max
(
eps_end
,
eps_decay
*
eps
)
# decrease epsilon
done_window
.
append
(
env_done
)
scores_window
.
append
(
score
/
max_steps
)
# save most recent score
scores
.
append
(
np
.
mean
(
scores_window
))
dones_list
.
append
((
np
.
mean
(
done_window
)))
print
(
'
\r
Training {} Agents on ({},{}).
\t
Episode {}
\t
Average Score: {:.3f}
\t
Dones: {:.2f}%
\t
Epsilon: {:.2f}
\t
Action Probabilities:
\t
{}
'
.
format
(
env
.
get_num_agents
(),
x_dim
,
y_dim
,
trials
,
np
.
mean
(
scores_window
),
100
*
np
.
mean
(
done_window
),
eps
,
action_prob
/
np
.
sum
(
action_prob
)),
end
=
"
"
)
if
trials
%
100
==
0
:
data
,
distance
,
agent_data
=
split_tree
(
tree
=
np
.
array
(
next_obs
[
a
]),
current_depth
=
0
)
data
=
norm_obs_clip
(
data
)
distance
=
norm_obs_clip
(
distance
)
agent_data
=
np
.
clip
(
agent_data
,
-
1
,
1
)
next_obs
[
a
]
=
np
.
concatenate
((
np
.
concatenate
((
data
,
distance
)),
agent_data
))
time_obs
.
append
(
next_obs
)
# Update replay buffer and train agent
for
a
in
range
(
env
.
get_num_agents
()):
agent_next_obs
[
a
]
=
np
.
concatenate
((
time_obs
[
0
][
a
],
time_obs
[
1
][
a
]))
if
done
[
a
]:
final_obs
[
a
]
=
agent_obs
[
a
].
copy
()
final_obs_next
[
a
]
=
agent_next_obs
[
a
].
copy
()
final_action_dict
.
update
({
a
:
action_dict
[
a
]})
if
not
demo
and
not
done
[
a
]:
agent
.
step
(
agent_obs
[
a
],
action_dict
[
a
],
all_rewards
[
a
],
agent_next_obs
[
a
],
done
[
a
])
score
+=
all_rewards
[
a
]
/
env
.
get_num_agents
()
agent_obs
=
agent_next_obs
.
copy
()
if
done
[
'
__all__
'
]:
env_done
=
1
for
a
in
range
(
env
.
get_num_agents
()):
agent
.
step
(
final_obs
[
a
],
final_action_dict
[
a
],
all_rewards
[
a
],
final_obs_next
[
a
],
done
[
a
])
break
# Epsilon decay
eps
=
max
(
eps_end
,
eps_decay
*
eps
)
# decrease epsilon
done_window
.
append
(
env_done
)
scores_window
.
append
(
score
/
max_steps
)
# save most recent score
scores
.
append
(
np
.
mean
(
scores_window
))
dones_list
.
append
((
np
.
mean
(
done_window
)))
print
(
'
\r
Training {} Agents.
\t
Episode {}
\t
Average Score: {:.3f}
\t
Dones: {:.2f}%
\t
Epsilon: {:.2f}
\t
Action Probabilities:
\t
{}
'
.
format
(
env
.
get_num_agents
(),
'
\r
Training {} Agents
on ({},{})
.
\t
Episode {}
\t
Average Score: {:.3f}
\t
Dones: {:.2f}%
\t
Epsilon: {:.2f}
\t
Action Probabilities:
\t
{}
'
.
format
(
env
.
get_num_agents
(),
x_dim
,
y_dim
,
trials
,
np
.
mean
(
scores_window
),
100
*
np
.
mean
(
done_window
),
eps
,
action_prob
/
np
.
sum
(
action_prob
)))
torch
.
save
(
agent
.
qnetwork_local
.
state_dict
(),
'
./Nets/avoid_checkpoint
'
+
str
(
trials
)
+
'
.pth
'
)
action_prob
=
[
1
]
*
action_size
plt
.
plot
(
scores
)
plt
.
show
()
eps
,
action_prob
/
np
.
sum
(
action_prob
)),
end
=
"
"
)
if
trials
%
100
==
0
:
print
(
'
\r
Training {} Agents.
\t
Episode {}
\t
Average Score: {:.3f}
\t
Dones: {:.2f}%
\t
Epsilon: {:.2f}
\t
Action Probabilities:
\t
{}
'
.
format
(
env
.
get_num_agents
(),
trials
,
np
.
mean
(
scores_window
),
100
*
np
.
mean
(
done_window
),
eps
,
action_prob
/
np
.
sum
(
action_prob
)))
torch
.
save
(
agent
.
qnetwork_local
.
state_dict
(),
'
./Nets/avoid_checkpoint
'
+
str
(
trials
)
+
'
.pth
'
)
action_prob
=
[
1
]
*
action_size
plt
.
plot
(
scores
)
plt
.
show
()
if
__name__
==
'
__main__
'
:
main
(
sys
.
argv
[
1
:])
This diff is collapsed.
Click to expand it.
torch_training/training_navigation.py
+
4
−
5
View file @
e0a28d85
import
getopt
import
random
import
sys
from
collections
import
deque
import
getopt
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
random
import
torch
from
dueling_double_dqn
import
Agent
...
...
@@ -16,15 +16,14 @@ from utils.observation_utils import norm_obs_clip, split_tree
def
main
(
argv
):
try
:
opts
,
args
=
getopt
.
getopt
(
argv
,
"
n:
"
,
[
"
n_trials=
"
])
except
getopt
.
GetoptError
:
print
(
'
training_navigation.py -n <n_trials>
'
)
sys
.
exit
(
2
)
for
opt
,
arg
in
opts
:
if
opt
in
(
'
-n
'
,
'
--n_trials
'
):
n_trials
=
arg
if
opt
in
(
'
-n
'
,
'
--n_trials
'
):
n_trials
=
int
(
arg
)
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment