Skip to content
Snippets Groups Projects
Commit bb778417 authored by Erik Nygren's avatar Erik Nygren
Browse files

minor bugfix in inference files

parent 4fc55df4
No related branches found
No related tags found
No related merge requests found
No preview for this file type
No preview for this file type
......@@ -53,6 +53,7 @@ state_size = num_features_per_node * nr_nodes
action_size = 5
n_trials = 100
observation_radius = 10
max_steps = int(3 * (env.height + env.width))
eps = 1.
eps_end = 0.005
......@@ -68,7 +69,7 @@ action_prob = [0] * action_size
agent_obs = [None] * env.get_num_agents()
agent_next_obs = [None] * env.get_num_agents()
agent = Agent(state_size, action_size, "FC", 0)
with path(torch_training.Nets, "avoid_checkpoint2900.pth") as file_in:
with path(torch_training.Nets, "avoid_checkpoint49700.pth") as file_in:
agent.qnetwork_local.load_state_dict(torch.load(file_in))
record_images = False
......@@ -84,7 +85,7 @@ for trials in range(1, n_trials + 1):
for a in range(env.get_num_agents()):
data, distance, agent_data = split_tree(tree=np.array(obs[a]), num_features_per_node=num_features_per_node,
current_depth=0)
data = norm_obs_clip(data)
data = norm_obs_clip(data, fixed_radius=observation_radius)
distance = norm_obs_clip(distance)
agent_data = np.clip(agent_data, -1, 1)
agent_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
......@@ -106,9 +107,10 @@ for trials in range(1, n_trials + 1):
next_obs, all_rewards, done, _ = env.step(action_dict)
for a in range(env.get_num_agents()):
data, distance, agent_data = split_tree(tree=np.array(obs[a]), num_features_per_node=num_features_per_node,
data, distance, agent_data = split_tree(tree=np.array(next_obs[a]),
num_features_per_node=num_features_per_node,
current_depth=0)
data = norm_obs_clip(data)
data = norm_obs_clip(data, fixed_radius=observation_radius)
distance = norm_obs_clip(distance)
agent_data = np.clip(agent_data, -1, 1)
agent_next_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
......
......@@ -3,7 +3,7 @@ from collections import deque
import numpy as np
import torch
from flatland.envs.generators import rail_from_file
from flatland.envs.generators import complex_rail_generator
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv
......@@ -16,7 +16,7 @@ from utils.observation_utils import norm_obs_clip, split_tree
random.seed(1)
np.random.seed(1)
"""
file_name = "./railway/complex_scene.pkl"
env = RailEnv(width=10,
height=20,
......@@ -40,7 +40,7 @@ env = RailEnv(width=x_dim,
obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()),
number_of_agents=n_agents)
env.reset(True, True)
"""
observation_helper = TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv())
env_renderer = RenderTool(env, gl="PILSVG", )
num_features_per_node = env.obs_builder.observation_dim
......@@ -67,7 +67,7 @@ action_prob = [0] * action_size
agent_obs = [None] * env.get_num_agents()
agent_next_obs = [None] * env.get_num_agents()
agent = Agent(state_size, action_size, "FC", 0)
with path(torch_training.Nets, "avoid_checkpoint60000.pth") as file_in:
with path(torch_training.Nets, "avoid_checkpoint49700.pth") as file_in:
agent.qnetwork_local.load_state_dict(torch.load(file_in))
record_images = False
......@@ -101,7 +101,7 @@ for trials in range(1, n_trials + 1):
# Run episode
for step in range(max_steps):
env_renderer.render_env(show=True, show_observations=False, show_predictions=False)
env_renderer.render_env(show=True, show_observations=False, show_predictions=True)
if record_images:
env_renderer.gl.saveImage("./Images/flatland_frame_{:04d}.bmp".format(frame_step))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment