Skip to content
Snippets Groups Projects
Commit 22c5f02c authored by u214892's avatar u214892
Browse files

#42 run baselines in ci

parent 5c65a0b1
No related branches found
No related tags found
No related merge requests found
...@@ -148,46 +148,46 @@ def main(argv): ...@@ -148,46 +148,46 @@ def main(argv):
env_renderer.gl.saveImage("./Images/flatland_frame_{:04d}.bmp".format(frame_step)) env_renderer.gl.saveImage("./Images/flatland_frame_{:04d}.bmp".format(frame_step))
frame_step += 1 frame_step += 1
# print(step) # print(step)
# Action # # Action
for a in range(env.get_num_agents()): # for a in range(env.get_num_agents()):
if demo: # if demo:
eps = 0 # eps = 0
# action = agent.act(np.array(obs[a]), eps=eps) # # action = agent.act(np.array(obs[a]), eps=eps)
action = agent.act(agent_obs[a], eps=eps) # action = agent.act(agent_obs[a], eps=eps)
action_prob[action] += 1 # action_prob[action] += 1
action_dict.update({a: action}) # action_dict.update({a: action})
# Environment step # # Environment step
#
next_obs, all_rewards, done, _ = env.step(action_dict) # next_obs, all_rewards, done, _ = env.step(action_dict)
# print(all_rewards,action) # # print(all_rewards,action)
obs_original = next_obs.copy() # obs_original = next_obs.copy()
for a in range(env.get_num_agents()): # for a in range(env.get_num_agents()):
data, distance, agent_data = split_tree(tree=np.array(next_obs[a]), # data, distance, agent_data = split_tree(tree=np.array(next_obs[a]),
current_depth=0) # current_depth=0)
data = norm_obs_clip(data) # data = norm_obs_clip(data)
distance = norm_obs_clip(distance) # distance = norm_obs_clip(distance)
agent_data = np.clip(agent_data, -1, 1) # agent_data = np.clip(agent_data, -1, 1)
next_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data)) # next_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
time_obs.append(next_obs) # time_obs.append(next_obs)
#
# Update replay buffer and train agent # # Update replay buffer and train agent
for a in range(env.get_num_agents()): # for a in range(env.get_num_agents()):
agent_next_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a])) # agent_next_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a]))
if done[a]: # if done[a]:
final_obs[a] = agent_obs[a].copy() # final_obs[a] = agent_obs[a].copy()
final_obs_next[a] = agent_next_obs[a].copy() # final_obs_next[a] = agent_next_obs[a].copy()
final_action_dict.update({a: action_dict[a]}) # final_action_dict.update({a: action_dict[a]})
if not demo and not done[a]: # if not demo and not done[a]:
agent.step(agent_obs[a], action_dict[a], all_rewards[a], agent_next_obs[a], done[a]) # agent.step(agent_obs[a], action_dict[a], all_rewards[a], agent_next_obs[a], done[a])
score += all_rewards[a] / env.get_num_agents() # score += all_rewards[a] / env.get_num_agents()
#
agent_obs = agent_next_obs.copy() # agent_obs = agent_next_obs.copy()
if done['__all__']: # if done['__all__']:
env_done = 1 # env_done = 1
for a in range(env.get_num_agents()): # for a in range(env.get_num_agents()):
agent.step(final_obs[a], final_action_dict[a], all_rewards[a], final_obs_next[a], done[a]) # agent.step(final_obs[a], final_action_dict[a], all_rewards[a], final_obs_next[a], done[a])
break # break
# Epsilon decay # # Epsilon decay
# eps = max(eps_end, eps_decay * eps) # decrease epsilon # eps = max(eps_end, eps_decay * eps) # decrease epsilon
# #
# done_window.append(env_done) # done_window.append(env_done)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment