Forked from
Flatland / baselines
149 commits behind the upstream repository.
-
Erik Nygren authoredErik Nygren authored
multi_agent_training.py 9.07 KiB
import getopt
import random
import sys
from collections import deque
import matplotlib.pyplot as plt
import numpy as np
import torch
from flatland.envs.generators import complex_rail_generator
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv
from flatland.utils.rendertools import RenderTool
from importlib_resources import path
import torch_training.Nets
from torch_training.dueling_double_dqn import Agent
from utils.observation_utils import norm_obs_clip, split_tree
print("multi_agent_trainging.py (1)")
def main(argv):
try:
opts, args = getopt.getopt(argv, "n:", ["n_trials="])
except getopt.GetoptError:
print('training_navigation.py -n <n_trials>')
sys.exit(2)
for opt, arg in opts:
if opt in ('-n', '--n_trials'):
n_trials = int(arg)
print("main1")
random.seed(1)
np.random.seed(1)
"""
file_name = "./railway/complex_scene.pkl"
env = RailEnv(width=10,
height=20,
rail_generator=rail_from_data(file_name),
obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()))
x_dim = env.width
y_dim = env.height
"""
x_dim = np.random.randint(8, 20)
y_dim = np.random.randint(8, 20)
n_agents = np.random.randint(3, 8)
n_goals = n_agents + np.random.randint(0, 3)
min_dist = int(0.75 * min(x_dim, y_dim))
print("main2")
env = RailEnv(width=x_dim,
height=y_dim,
rail_generator=complex_rail_generator(nr_start_goal=n_goals, nr_extra=5, min_dist=min_dist,
max_dist=99999,
seed=0),
obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()),
number_of_agents=n_agents)
env.reset(True, True)
observation_helper = TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv())
env_renderer = RenderTool(env, gl="PILSVG", )
handle = env.get_agent_handles()
features_per_node = 9
state_size = features_per_node * 85 * 2
action_size = 5
print("main3")
# We set the number of episodes we would like to train on
if 'n_trials' not in locals():
n_trials = 60000
max_steps = int(3 * (env.height + env.width))
eps = 1.
eps_end = 0.005
eps_decay = 0.9995
action_dict = dict()
final_action_dict = dict()
scores_window = deque(maxlen=100)
done_window = deque(maxlen=100)
time_obs = deque(maxlen=2)
scores = []
dones_list = []
action_prob = [0] * action_size
agent_obs = [None] * env.get_num_agents()
agent_next_obs = [None] * env.get_num_agents()
agent = Agent(state_size, action_size, "FC", 0)
with path(torch_training.Nets, "avoid_checkpoint30000.pth") as file_in:
agent.qnetwork_local.load_state_dict(torch.load(file_in))
demo = False
record_images = False
frame_step = 0
print("Going to run training for {} trials...".format(n_trials))
for trials in range(1, n_trials + 1):
if trials % 50 == 0 and not demo:
x_dim = np.random.randint(8, 20)
y_dim = np.random.randint(8, 20)
n_agents = np.random.randint(3, 8)
n_goals = n_agents + np.random.randint(0, 3)
min_dist = int(0.75 * min(x_dim, y_dim))
env = RailEnv(width=x_dim,
height=y_dim,
rail_generator=complex_rail_generator(nr_start_goal=n_goals, nr_extra=5, min_dist=min_dist,
max_dist=99999,
seed=0),
obs_builder_object=TreeObsForRailEnv(max_depth=3,
predictor=ShortestPathPredictorForRailEnv()),
number_of_agents=n_agents)
env.reset(True, True)
max_steps = int(3 * (env.height + env.width))
agent_obs = [None] * env.get_num_agents()
agent_next_obs = [None] * env.get_num_agents()
# Reset environment
obs = env.reset(True, True)
if demo:
env_renderer.set_new_rail()
obs_original = obs.copy()
final_obs = obs.copy()
final_obs_next = obs.copy()
for a in range(env.get_num_agents()):
data, distance, agent_data = split_tree(tree=np.array(obs[a]),
current_depth=0)
data = norm_obs_clip(data)
distance = norm_obs_clip(distance)
agent_data = np.clip(agent_data, -1, 1)
obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
agent_data = env.agents[a]
speed = 1 # np.random.randint(1,5)
agent_data.speed_data['speed'] = 1. / speed
for i in range(2):
time_obs.append(obs)
# env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5)
for a in range(env.get_num_agents()):
agent_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a]))
score = 0
env_done = 0
# Run episode
for step in range(max_steps):
if demo:
env_renderer.renderEnv(show=True, show_observations=False)
# observation_helper.util_print_obs_subtree(obs_original[0])
if record_images:
env_renderer.gl.saveImage("./Images/flatland_frame_{:04d}.bmp".format(frame_step))
frame_step += 1
# print(step)
# Action
for a in range(env.get_num_agents()):
if demo:
eps = 0
# action = agent.act(np.array(obs[a]), eps=eps)
action = agent.act(agent_obs[a], eps=eps)
action_prob[action] += 1
action_dict.update({a: action})
# Environment step
next_obs, all_rewards, done, _ = env.step(action_dict)
# print(all_rewards,action)
obs_original = next_obs.copy()
for a in range(env.get_num_agents()):
data, distance, agent_data = split_tree(tree=np.array(next_obs[a]),
current_depth=0)
data = norm_obs_clip(data)
distance = norm_obs_clip(distance)
agent_data = np.clip(agent_data, -1, 1)
next_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
time_obs.append(next_obs)
# Update replay buffer and train agent
for a in range(env.get_num_agents()):
agent_next_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a]))
if done[a]:
final_obs[a] = agent_obs[a].copy()
final_obs_next[a] = agent_next_obs[a].copy()
final_action_dict.update({a: action_dict[a]})
if not demo and not done[a]:
agent.step(agent_obs[a], action_dict[a], all_rewards[a], agent_next_obs[a], done[a])
score += all_rewards[a] / env.get_num_agents()
agent_obs = agent_next_obs.copy()
if done['__all__']:
env_done = 1
for a in range(env.get_num_agents()):
agent.step(final_obs[a], final_action_dict[a], all_rewards[a], final_obs_next[a], done[a])
break
# Epsilon decay
eps = max(eps_end, eps_decay * eps) # decrease epsilon
done_window.append(env_done)
scores_window.append(score / max_steps) # save most recent score
scores.append(np.mean(scores_window))
dones_list.append((np.mean(done_window)))
print(
'\rTraining {} Agents on ({},{}).\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format(
env.get_num_agents(), x_dim, y_dim,
trials,
np.mean(scores_window),
100 * np.mean(done_window),
eps, action_prob / np.sum(action_prob)), end=" ")
if trials % 100 == 0:
print(
'\rTraining {} Agents.\t Episode {}\t Average Score: {:.3f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format(
env.get_num_agents(),
trials,
np.mean(scores_window),
100 * np.mean(done_window),
eps,
action_prob / np.sum(action_prob)))
torch.save(agent.qnetwork_local.state_dict(),
'./Nets/avoid_checkpoint' + str(trials) + '.pth')
action_prob = [1] * action_size
plt.plot(scores)
plt.show()
print("multi_agent_trainging.py (2)")
if __name__ == '__main__':
print("main")
main(sys.argv[1:])
print("multi_agent_trainging.py (3)")