Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import random
from collections import deque
import numpy as np
import torch
from flatland.envs.generators import rail_from_file
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv
from flatland.utils.rendertools import RenderTool
from importlib_resources import path
import torch_training.Nets
from torch_training.dueling_double_dqn import Agent
from utils.observation_utils import norm_obs_clip, split_tree
random.seed(1)
np.random.seed(1)
file_name = "./railway/complex_scene.pkl"
env = RailEnv(width=10,
height=20,
rail_generator=rail_from_file(file_name),
obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()))
x_dim = env.width
y_dim = env.height
"""
x_dim = np.random.randint(8, 20)
y_dim = np.random.randint(8, 20)
n_agents = np.random.randint(3, 8)
n_goals = n_agents + np.random.randint(0, 3)
min_dist = int(0.75 * min(x_dim, y_dim))
env = RailEnv(width=x_dim,
height=y_dim,
rail_generator=complex_rail_generator(nr_start_goal=n_goals, nr_extra=5, min_dist=min_dist,
max_dist=99999,
seed=0),
obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()),
number_of_agents=n_agents)
env.reset(True, True)
"""
observation_helper = TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv())
env_renderer = RenderTool(env, gl="PILSVG", )
num_features_per_node = env.obs_builder.observation_dim
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
handle = env.get_agent_handles()
features_per_node = 9
state_size = features_per_node * 85 * 2
action_size = 5
# We set the number of episodes we would like to train on
if 'n_trials' not in locals():
n_trials = 60000
max_steps = int(3 * (env.height + env.width))
eps = 1.
eps_end = 0.005
eps_decay = 0.9995
action_dict = dict()
final_action_dict = dict()
scores_window = deque(maxlen=100)
done_window = deque(maxlen=100)
time_obs = deque(maxlen=2)
scores = []
dones_list = []
action_prob = [0] * action_size
agent_obs = [None] * env.get_num_agents()
agent_next_obs = [None] * env.get_num_agents()
agent = Agent(state_size, action_size, "FC", 0)
with path(torch_training.Nets, "avoid_checkpoint60000.pth") as file_in:
agent.qnetwork_local.load_state_dict(torch.load(file_in))
record_images = False
frame_step = 0
for trials in range(1, n_trials + 1):
# Reset environment
obs = env.reset(True, True)
env_renderer.set_new_rail()
obs_original = obs.copy()
final_obs = obs.copy()
final_obs_next = obs.copy()
for a in range(env.get_num_agents()):
data, distance, agent_data = split_tree(tree=np.array(obs[a]), num_features_per_node=num_features_per_node,
current_depth=0)
data = norm_obs_clip(data)
distance = norm_obs_clip(distance)
agent_data = np.clip(agent_data, -1, 1)
obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
agent_data = env.agents[a]
speed = 1 # np.random.randint(1,5)
agent_data.speed_data['speed'] = 1. / speed
for i in range(2):
time_obs.append(obs)
# env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5)
for a in range(env.get_num_agents()):
agent_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a]))
# Run episode
for step in range(max_steps):
env_renderer.render_env(show=True, show_observations=False, show_predictions=False)
if record_images:
env_renderer.gl.saveImage("./Images/flatland_frame_{:04d}.bmp".format(frame_step))
frame_step += 1
# Action
for a in range(env.get_num_agents()):
# action = agent.act(np.array(obs[a]), eps=eps)
action = agent.act(agent_obs[a], eps=0)
action_dict.update({a: action})
# Environment step
next_obs, all_rewards, done, _ = env.step(action_dict)
# print(all_rewards,action)
obs_original = next_obs.copy()
for a in range(env.get_num_agents()):
data, distance, agent_data = split_tree(tree=np.array(next_obs[a]),
num_features_per_node=num_features_per_node,
current_depth=0)
data = norm_obs_clip(data)
distance = norm_obs_clip(distance)
agent_data = np.clip(agent_data, -1, 1)
next_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
time_obs.append(next_obs)
for a in range(env.get_num_agents()):
agent_next_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a]))
agent_obs = agent_next_obs.copy()
if done['__all__']:
break