Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Flatland
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
pranjal_dhole
Flatland
Commits
603d67f6
Commit
603d67f6
authored
5 years ago
by
Erik Nygren
Browse files
Options
Downloads
Patches
Plain Diff
fixed initial malfunction and tests
parent
6a3f528b
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
examples/introduction_flatland_2_1.py
+10
-5
10 additions, 5 deletions
examples/introduction_flatland_2_1.py
flatland/envs/rail_env.py
+4
-2
4 additions, 2 deletions
flatland/envs/rail_env.py
tests/test_flatland_malfunction.py
+13
-14
13 additions, 14 deletions
tests/test_flatland_malfunction.py
with
27 additions
and
21 deletions
examples/introduction_flatland_2_1.py
+
10
−
5
View file @
603d67f6
# In Flatland you can use custom observation builders and predicitors
# Observation builders generate the observation needed by the controller
# Preditctors can be used to do short time prediction which can help in avoiding conflicts in the network
import
time
from
flatland.envs.observations
import
GlobalObsForRailEnv
# First of all we import the Flatland rail environment
from
flatland.envs.rail_env
import
RailEnv
...
...
@@ -26,8 +28,8 @@ from flatland.utils.rendertools import RenderTool, AgentRenderVariant
# Here we use the sparse_rail_generator with the following parameters
width
=
100
# With of map
height
=
100
# Height of ap
nr_trains
=
1
0
# Number of trains that have an assigned task in the env
height
=
100
# Height of
m
ap
nr_trains
=
5
0
# Number of trains that have an assigned task in the env
cities_in_map
=
20
# Number of cities where agents can start or end
seed
=
14
# Random seed
grid_distribution_of_cities
=
False
# Type of city distribution, if False cities are randomly placed
...
...
@@ -151,14 +153,14 @@ for agent_idx, agent in enumerate(env.agents):
# If multiple agents want to enter the same cell at the same time the lower index agent will enter first.
# Let's check if there are any agents with the same start location
agents_with_same_start
=
[]
agents_with_same_start
=
set
()
print
(
"
\n
The following agents have the same initial position:
"
)
print
(
"
=====================================================
"
)
for
agent_idx
,
agent
in
enumerate
(
env
.
agents
):
for
agent_2_idx
,
agent2
in
enumerate
(
env
.
agents
):
if
agent_idx
!=
agent_2_idx
and
agent
.
initial_position
==
agent2
.
initial_position
:
print
(
"
Agent {} as the same initial position as agent {}
"
.
format
(
agent_idx
,
agent_2_idx
))
agents_with_same_start
.
a
ppen
d
(
agent_idx
)
agents_with_same_start
.
a
d
d
(
agent_idx
)
# Lets try to enter with all of these agents at the same time
action_dict
=
dict
()
...
...
@@ -246,8 +248,11 @@ for step in range(500):
# Environment step which returns the observations for all agents, their corresponding
# reward and whether their are done
start_time
=
time
.
time
()
next_obs
,
all_rewards
,
done
,
_
=
env
.
step
(
action_dict
)
env_renderer
.
render_env
(
show
=
True
,
show_observations
=
False
,
show_predictions
=
False
)
end_time
=
time
.
time
()
print
(
end_time
-
start_time
)
# env_renderer.render_env(show=True, show_observations=False, show_predictions=False)
frame_step
+=
1
# Update replay buffer and train agent
for
a
in
range
(
env
.
get_num_agents
()):
...
...
This diff is collapsed.
Click to expand it.
flatland/envs/rail_env.py
+
4
−
2
View file @
603d67f6
...
...
@@ -308,7 +308,9 @@ class RailEnv(Environment):
# A proportion of agent in the environment will receive a positive malfunction rate
if
self
.
np_random
.
rand
()
<
self
.
proportion_malfunctioning_trains
:
agent
.
malfunction_data
[
'
malfunction_rate
'
]
=
self
.
mean_malfunction_rate
next_breakdown
=
int
(
self
.
_exp_distirbution_synced
(
rate
=
agent
.
malfunction_data
[
'
malfunction_rate
'
]))
agent
.
malfunction_data
[
'
next_malfunction
'
]
=
next_breakdown
agent
.
malfunction_data
[
'
malfunction
'
]
=
0
initial_malfunction
=
self
.
_agent_malfunction
(
i_agent
)
...
...
@@ -346,7 +348,7 @@ class RailEnv(Environment):
"""
agent
=
self
.
agents
[
i_agent
]
# Decrease counter for next event only if agent is currently not broken
# Decrease counter for next event only if agent is currently not broken
and agent has a malfunction rate
if
agent
.
malfunction_data
[
'
malfunction_rate
'
]
>=
1
and
agent
.
malfunction_data
[
'
next_malfunction
'
]
>
0
and
\
agent
.
malfunction_data
[
'
malfunction
'
]
<
1
:
agent
.
malfunction_data
[
'
next_malfunction
'
]
-=
1
...
...
This diff is collapsed.
Click to expand it.
tests/test_flatland_malfunction.py
+
13
−
14
View file @
603d67f6
...
...
@@ -126,7 +126,7 @@ def test_malfunction_process():
env
.
agents
[
0
].
malfunction_data
[
'
nr_malfunctions
'
])
# Check that 20 stops where performed
assert
agent_halts
==
2
0
assert
agent_halts
==
2
1
# Check that malfunctioning data was standing around
assert
total_down_time
>
0
...
...
@@ -155,16 +155,16 @@ def test_malfunction_process_statistically():
env
.
agents
[
0
].
target
=
(
0
,
0
)
nb_malfunction
=
0
agent_malfunction_list
=
[[
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
],
[
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
],
[
6
,
6
,
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
],
[
6
,
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
],
[
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
0
,
6
],
[
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
6
],
[
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
6
,
5
,
4
,
3
,
2
],
[
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
6
,
5
],
[
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
],
[
6
,
6
,
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
]]
agent_malfunction_list
=
[[
0
,
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
0
,
6
,
5
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
6
,
5
,
4
],
[
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
],
[
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
0
,
0
],
[
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
6
,
5
,
4
,
3
],
[
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
6
,
5
],
[
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
6
,
5
,
4
,
3
,
2
,
1
],
[
6
,
6
,
6
,
6
,
5
,
4
,
3
,
2
,
1
,
0
,
0
,
0
,
0
,
6
,
5
,
4
,
3
,
2
,
1
,
0
]]
for
step
in
range
(
20
):
action_dict
:
Dict
[
int
,
RailEnvActions
]
=
{}
...
...
@@ -175,6 +175,7 @@ def test_malfunction_process_statistically():
# agent_malfunction_list[agent_idx].append(env.agents[agent_idx].malfunction_data['malfunction'])
assert
env
.
agents
[
agent_idx
].
malfunction_data
[
'
malfunction
'
]
==
agent_malfunction_list
[
agent_idx
][
step
]
env
.
step
(
action_dict
)
# print(agent_malfunction_list)
def
test_malfunction_before_entry
():
...
...
@@ -230,14 +231,13 @@ def test_malfunction_before_entry():
assert
env
.
agents
[
8
].
malfunction_data
[
'
malfunction
'
]
==
2
assert
env
.
agents
[
9
].
malfunction_data
[
'
malfunction
'
]
==
2
#for a in range(env.get_num_agents()):
#
for a in range(env.get_num_agents()):
# print("assert env.agents[{}].malfunction_data['malfunction'] == {}".format(a,
# env.agents[a].malfunction_data[
# 'malfunction']))
def
test_initial_malfunction
():
stochastic_data
=
{
'
prop_malfunction
'
:
1.
,
# Percentage of defective agents
'
malfunction_rate
'
:
100
,
# Rate of malfunction occurence
'
min_duration
'
:
2
,
# Minimal duration of malfunction
...
...
@@ -410,7 +410,6 @@ def test_initial_malfunction_do_nothing():
rail
,
rail_map
=
make_simple_rail2
()
env
=
RailEnv
(
width
=
25
,
height
=
30
,
rail_generator
=
rail_from_grid_transition_map
(
rail
),
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment