Skip to content
Snippets Groups Projects
Commit 976629d4 authored by Cao Yuhang's avatar Cao Yuhang
Browse files

support segm evaluation using different score from bbox det

parent dc341cb8
No related branches found
No related tags found
No related merge requests found
......@@ -6,7 +6,7 @@ from pycocotools.cocoeval import COCOeval
from .recall import eval_recalls
def coco_eval(result_file, result_types, coco, max_dets=(100, 300, 1000)):
def coco_eval(result_files, result_types, coco, max_dets=(100, 300, 1000)):
for res_type in result_types:
assert res_type in [
'proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'
......@@ -17,16 +17,17 @@ def coco_eval(result_file, result_types, coco, max_dets=(100, 300, 1000)):
assert isinstance(coco, COCO)
if result_types == ['proposal_fast']:
ar = fast_eval_recall(result_file, coco, np.array(max_dets))
ar = fast_eval_recall(result_files, coco, np.array(max_dets))
for i, num in enumerate(max_dets):
print('AR@{}\t= {:.4f}'.format(num, ar[i]))
return
assert result_file.endswith('.json')
coco_dets = coco.loadRes(result_file)
img_ids = coco.getImgIds()
for res_type in result_types:
result_file = result_files[res_type]
assert result_file.endswith('.json')
coco_dets = coco.loadRes(result_file)
img_ids = coco.getImgIds()
iou_type = 'bbox' if res_type == 'proposal' else res_type
cocoEval = COCOeval(coco, coco_dets, iou_type)
cocoEval.params.imgIds = img_ids
......@@ -118,32 +119,59 @@ def det2json(dataset, results):
def segm2json(dataset, results):
json_results = []
bbox_json_results = []
segm_json_results = []
for idx in range(len(dataset)):
img_id = dataset.img_ids[idx]
det, seg = results[idx]
for label in range(len(det)):
# bbox results
bboxes = det[label]
segms = seg[label]
for i in range(bboxes.shape[0]):
data = dict()
data['image_id'] = img_id
data['bbox'] = xyxy2xywh(bboxes[i])
data['score'] = float(bboxes[i][4])
data['category_id'] = dataset.cat_ids[label]
bbox_json_results.append(data)
# segm results
# some detectors use different score for det and segm
if len(seg) == 2:
segms = seg[0][label]
mask_score = seg[1][label]
else:
segms = seg[label]
mask_score = [bbox[4] for bbox in bboxes]
for i in range(bboxes.shape[0]):
data = dict()
data['image_id'] = img_id
data['score'] = float(mask_score[i])
data['category_id'] = dataset.cat_ids[label]
segms[i]['counts'] = segms[i]['counts'].decode()
data['segmentation'] = segms[i]
json_results.append(data)
return json_results
segm_json_results.append(data)
return bbox_json_results, segm_json_results
def results2json(dataset, results, out_file):
result_files = dict()
if isinstance(results[0], list):
json_results = det2json(dataset, results)
result_files['bbox'] = '{}.{}.json'.format(out_file, 'bbox')
result_files['proposal'] = '{}.{}.json'.format(out_file, 'bbox')
mmcv.dump(json_results, result_files['bbox'])
elif isinstance(results[0], tuple):
json_results = segm2json(dataset, results)
result_files['bbox'] = '{}.{}.json'.format(out_file, 'bbox')
result_files['proposal'] = '{}.{}.json'.format(out_file, 'bbox')
result_files['segm'] = '{}.{}.json'.format(out_file, 'segm')
mmcv.dump(json_results[0], result_files['bbox'])
mmcv.dump(json_results[1], result_files['segm'])
elif isinstance(results[0], np.ndarray):
json_results = proposal2json(dataset, results)
result_files['proposal'] = '{}.{}.json'.format(out_file, 'proposal')
mmcv.dump(json_results, result_files['proposal'])
else:
raise TypeError('invalid type of results')
mmcv.dump(json_results, out_file)
return result_files
......@@ -135,15 +135,15 @@ class CocoDistEvalRecallHook(DistEvalHook):
class CocoDistEvalmAPHook(DistEvalHook):
def evaluate(self, runner, results):
tmp_file = osp.join(runner.work_dir, 'temp_0.json')
results2json(self.dataset, results, tmp_file)
tmp_file = osp.join(runner.work_dir, 'temp_0')
result_files = results2json(self.dataset, results, tmp_file)
res_types = ['bbox',
'segm'] if runner.model.module.with_mask else ['bbox']
res_types = ['bbox', 'segm'
] if runner.model.module.with_mask else ['bbox']
cocoGt = self.dataset.coco
cocoDt = cocoGt.loadRes(tmp_file)
imgIds = cocoGt.getImgIds()
for res_type in res_types:
cocoDt = cocoGt.loadRes(result_files[res_type])
iou_type = res_type
cocoEval = COCOeval(cocoGt, cocoDt, iou_type)
cocoEval.params.imgIds = imgIds
......@@ -159,4 +159,5 @@ class CocoDistEvalmAPHook(DistEvalHook):
'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} '
'{ap[4]:.3f} {ap[5]:.3f}').format(ap=cocoEval.stats[:6])
runner.log_buffer.ready = True
os.remove(tmp_file)
for res_type in res_types:
os.remove(result_files[res_type])
......@@ -184,16 +184,16 @@ def main():
coco_eval(result_file, eval_types, dataset.coco)
else:
if not isinstance(outputs[0], dict):
result_file = args.out + '.json'
results2json(dataset, outputs, result_file)
coco_eval(result_file, eval_types, dataset.coco)
result_files = results2json(dataset, outputs, args.out)
coco_eval(result_files, eval_types, dataset.coco)
else:
for name in outputs[0]:
print('\nEvaluating {}'.format(name))
outputs_ = [out[name] for out in outputs]
result_file = args.out + '.{}.json'.format(name)
results2json(dataset, outputs_, result_file)
coco_eval(result_file, eval_types, dataset.coco)
result_file = args.out + '.{}'.format(name)
result_files = results2json(dataset, outputs_,
result_file)
coco_eval(result_files, eval_types, dataset.coco)
if __name__ == '__main__':
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment