Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
marl-flatland
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
manavsinghal157
marl-flatland
Commits
a854eed7
Commit
a854eed7
authored
4 years ago
by
Egli Adrian (IT-SCI-API-PFI)
Browse files
Options
Downloads
Patches
Plain Diff
looks good simplified
parent
8cf48167
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
reinforcement_learning/policy.py
+1
-4
1 addition, 4 deletions
reinforcement_learning/policy.py
reinforcement_learning/ppo/ppo_agent.py
+62
-27
62 additions, 27 deletions
reinforcement_learning/ppo/ppo_agent.py
with
63 additions
and
31 deletions
reinforcement_learning/policy.py
+
1
−
4
View file @
a854eed7
import
torch.nn
as
nn
class
Policy
(
nn
.
Module
):
def
__init__
(
self
):
super
(
Policy
,
self
).
__init__
()
class
Policy
:
def
step
(
self
,
handle
,
state
,
action
,
reward
,
next_state
,
done
):
raise
NotImplementedError
...
...
This diff is collapsed.
Click to expand it.
reinforcement_learning/ppo/ppo_agent.py
+
62
−
27
View file @
a854eed7
...
...
@@ -40,39 +40,74 @@ class DataBuffers:
self
.
memory
.
update
({
handle
:
transitions
})
class
PPOModelNetwork
(
nn
.
Module
):
def
__init__
(
self
,
state_size
,
action_size
,
hidsize1
=
128
,
hidsize2
=
128
):
super
(
DeepPPONetwork
,
self
).
__init__
()
self
.
fc_layer_1_val
=
nn
.
Linear
(
state_size
,
hidsize1
)
self
.
shared_network
=
nn
.
Linear
(
hidsize1
,
hidsize2
)
self
.
fc_policy_pi
=
nn
.
Linear
(
hidsize2
,
action_size
)
self
.
fc_value
=
nn
.
Linear
(
hidsize2
,
1
)
def
forward
(
self
,
x
):
val
=
F
.
relu
(
self
.
fc_layer_1_val
(
x
))
val
=
F
.
relu
(
self
.
shared_network
(
val
))
return
val
def
policy_pi_estimator
(
self
,
x
,
softmax_dim
=
0
):
x
=
F
.
tanh
(
self
.
forward
(
x
))
x
=
self
.
fc_policy_pi
(
x
)
prob
=
F
.
softmax
(
x
,
dim
=
softmax_dim
)
return
prob
def
value_estimator
(
self
,
x
):
x
=
F
.
tanh
(
self
.
forward
(
x
))
v
=
self
.
fc_value
(
x
)
return
v
# Checkpointing methods
def
save
(
self
,
filename
):
# print("Saving model from checkpoint:", filename)
torch
.
save
(
self
.
shared_network
.
state_dict
(),
filename
+
"
.fc_shared
"
)
torch
.
save
(
self
.
fc_policy_pi
.
state_dict
(),
filename
+
"
.fc_pi
"
)
torch
.
save
(
self
.
fc_value
.
state_dict
(),
filename
+
"
.fc_v
"
)
def
_load
(
self
,
obj
,
filename
):
if
os
.
path
.
exists
(
filename
):
print
(
'
>>
'
,
filename
)
try
:
obj
.
load_state_dict
(
torch
.
load
(
filename
,
map_location
=
device
))
except
:
print
(
"
>> failed!
"
)
return
obj
def
load
(
self
,
filename
):
print
(
"
load policy from file
"
,
filename
)
self
.
shared_network
=
self
.
_load
(
self
.
shared_network
,
filename
+
"
.fc_shared
"
)
self
.
fc_policy_pi
=
self
.
_load
(
self
.
fc_policy_pi
,
filename
+
"
.fc_pi
"
)
self
.
fc_value
=
self
.
_load
(
self
.
fc_value
,
filename
+
"
.fc_v
"
)
class
PPOAgent
(
Policy
):
def
__init__
(
self
,
state_size
,
action_size
):
super
(
PPOAgent
,
self
).
__init__
()
self
.
memory
=
DataBuffers
()
self
.
loss
=
0
self
.
fc1
=
nn
.
Linear
(
state_size
,
256
)
self
.
fc_pi
=
nn
.
Linear
(
256
,
action_size
)
self
.
fc_v
=
nn
.
Linear
(
256
,
1
)
self
.
optimizer
=
optim
.
Adam
(
self
.
parameters
(),
lr
=
LEARNING_RATE
)
self
.
value_model_network
=
PPOModelNetwork
(
state_size
,
action_size
)
self
.
optimizer
=
optim
.
Adam
(
self
.
value_model_network
.
parameters
(),
lr
=
LEARNING_RATE
)
def
reset
(
self
):
pass
def
pi
(
self
,
x
,
softmax_dim
=
0
):
x
=
F
.
tanh
(
self
.
fc1
(
x
))
x
=
self
.
fc_pi
(
x
)
prob
=
F
.
softmax
(
x
,
dim
=
softmax_dim
)
return
prob
def
v
(
self
,
x
):
x
=
F
.
tanh
(
self
.
fc1
(
x
))
v
=
self
.
fc_v
(
x
)
return
v
def
act
(
self
,
state
,
eps
=
None
):
prob
=
self
.
pi
(
torch
.
from_numpy
(
state
).
float
())
prob
=
self
.
value_model_network
.
policy_pi_estimator
(
torch
.
from_numpy
(
state
).
float
())
m
=
Categorical
(
prob
)
a
=
m
.
sample
().
item
()
return
a
def
step
(
self
,
handle
,
state
,
action
,
reward
,
next_state
,
done
):
# Record the results of the agent's action as transition
prob
=
self
.
pi
(
torch
.
from_numpy
(
state
).
float
())
prob
=
self
.
value_model_network
.
policy_pi_estimator
(
torch
.
from_numpy
(
state
).
float
())
transition
=
(
state
,
action
,
reward
,
next_state
,
prob
[
action
].
item
(),
done
)
self
.
memory
.
push_transition
(
handle
,
transition
)
...
...
@@ -114,8 +149,10 @@ class PPOAgent(Policy):
# run K_EPOCH optimisation steps
for
i
in
range
(
K_EPOCH
):
# temporal difference function / and prepare advantage function data
estimated_target_value
=
rewards
+
GAMMA
*
self
.
v
(
states_next
)
*
(
1.0
-
dones
)
difference_to_expected_value_deltas
=
estimated_target_value
-
self
.
v
(
states
)
estimated_target_value
=
rewards
+
GAMMA
*
self
.
value_model_network
.
value_estimator
(
states_next
)
*
(
1.0
-
dones
)
difference_to_expected_value_deltas
=
estimated_target_value
-
self
.
value_model_network
.
value_estimator
(
states
)
difference_to_expected_value_deltas
=
difference_to_expected_value_deltas
.
detach
().
numpy
()
# build advantage function and convert it to torch tensor (array)
...
...
@@ -128,7 +165,7 @@ class PPOAgent(Policy):
advantages
=
torch
.
tensor
(
advantage_list
,
dtype
=
torch
.
float
)
# estimate pi_action for all state
pi_actions
=
self
.
pi
(
states
,
softmax_dim
=
1
).
gather
(
1
,
actions
)
pi_actions
=
self
.
value_model_network
.
policy_pi_estimator
(
states
,
softmax_dim
=
1
).
gather
(
1
,
actions
)
# calculate the ratios
ratios
=
torch
.
exp
(
torch
.
log
(
pi_actions
)
-
torch
.
log
(
probs_action
))
# Normal Policy Gradient objective
...
...
@@ -136,7 +173,8 @@ class PPOAgent(Policy):
# clipped version of Normal Policy Gradient objective
clipped_surrogate_objective
=
torch
.
clamp
(
ratios
*
advantages
,
1
-
EPS_CLIP
,
1
+
EPS_CLIP
)
# value function loss
value_loss
=
F
.
mse_loss
(
self
.
v
(
states
),
estimated_target_value
.
detach
())
value_loss
=
F
.
mse_loss
(
self
.
value_model_network
.
value_estimator
(
states
),
estimated_target_value
.
detach
())
# loss
loss
=
-
torch
.
min
(
surrogate_objective
,
clipped_surrogate_objective
)
+
value_loss
...
...
@@ -156,9 +194,7 @@ class PPOAgent(Policy):
# Checkpointing methods
def
save
(
self
,
filename
):
# print("Saving model from checkpoint:", filename)
torch
.
save
(
self
.
fc1
.
state_dict
(),
filename
+
"
.fc1
"
)
torch
.
save
(
self
.
fc_pi
.
state_dict
(),
filename
+
"
.fc_pi
"
)
torch
.
save
(
self
.
fc_v
.
state_dict
(),
filename
+
"
.fc_v
"
)
self
.
value_model_network
.
save
(
filename
)
torch
.
save
(
self
.
optimizer
.
state_dict
(),
filename
+
"
.optimizer
"
)
def
_load
(
self
,
obj
,
filename
):
...
...
@@ -172,9 +208,8 @@ class PPOAgent(Policy):
def
load
(
self
,
filename
):
print
(
"
load policy from file
"
,
filename
)
self
.
fc1
=
self
.
_load
(
self
.
fc1
,
filename
+
"
.fc1
"
)
self
.
fc_pi
=
self
.
_load
(
self
.
fc_pi
,
filename
+
"
.fc_pi
"
)
self
.
fc_v
=
self
.
_load
(
self
.
fc_v
,
filename
+
"
.fc_v
"
)
self
.
value_model_network
.
load
(
filename
)
print
(
"
load optimizer from file
"
,
filename
)
self
.
optimizer
=
self
.
_load
(
self
.
optimizer
,
filename
+
"
.optimizer
"
)
def
clone
(
self
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment