Skip to content
Snippets Groups Projects
run.py 8.56 KiB
Newer Older
Adrian Egli's avatar
rl  
Adrian Egli committed
import sys
import time
from argparse import Namespace
from pathlib import Path

import numpy as np
from flatland.core.env_observation_builder import DummyObservationBuilder
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnvActions
from flatland.evaluators.client import FlatlandRemoteClient
from flatland.evaluators.client import TimeoutException

from utils.dead_lock_avoidance_agent import DeadLockAvoidanceAgent
from utils.deadlock_check import check_if_all_blocked
from utils.fast_tree_obs import FastTreeObs

base_dir = Path(__file__).resolve().parent.parent
sys.path.append(str(base_dir))

from reinforcement_learning.dddqn_policy import DDDQNPolicy

####################################################
# EVALUATION PARAMETERS

# Print per-step logs
VERBOSE = True

# Checkpoint to use (remember to push it!)
checkpoint = "./checkpoints/201106234244-400.pth"  # 15.64082361736683 Depth 1
checkpoint = "./checkpoints/201106234900-300.pth"  # 15.64082361736683 Depth 1
Adrian Egli's avatar
rl  
Adrian Egli committed

# Use last action cache
USE_ACTION_CACHE = False
USE_DEAD_LOCK_AVOIDANCE_AGENT = False

# Observation parameters (must match training parameters!)
observation_tree_depth = 1
observation_radius = 10
observation_max_path_depth = 30

####################################################

remote_client = FlatlandRemoteClient()

# Observation builder
predictor = ShortestPathPredictorForRailEnv(observation_max_path_depth)
tree_observation = FastTreeObs(max_depth=observation_tree_depth)

# Calculates state and action sizes
state_size = tree_observation.observation_dim
action_size = 5

# Creates the policy. No GPU on evaluation server.
policy = DDDQNPolicy(state_size, action_size, Namespace(**{'use_gpu': False}), evaluation_mode=True)
# policy = PPOAgent(state_size, action_size, 10)
policy.load(checkpoint)

#####################################################################
# Main evaluation loop
#####################################################################
evaluation_number = 0

while True:
    evaluation_number += 1

    # We use a dummy observation and call TreeObsForRailEnv ourselves when needed.
    # This way we decide if we want to calculate the observations or not instead
    # of having them calculated every time we perform an env step.
    time_start = time.time()
    observation, info = remote_client.env_create(
        obs_builder_object=DummyObservationBuilder()
    )
    env_creation_time = time.time() - time_start

    if not observation:
        # If the remote_client returns False on a `env_create` call,
        # then it basically means that your agent has already been
        # evaluated on all the required evaluation environments,
        # and hence it's safe to break out of the main evaluation loop.
        break

    print("Env Path : ", remote_client.current_env_path)
    print("Env Creation Time : ", env_creation_time)

    local_env = remote_client.env
    nb_agents = len(local_env.agents)
    max_nb_steps = local_env._max_episode_steps

    tree_observation.set_env(local_env)
    tree_observation.reset()
    observation = tree_observation.get_many(list(range(nb_agents)))

    print("Evaluation {}: {} agents in {}x{}".format(evaluation_number, nb_agents, local_env.width, local_env.height))

    # Now we enter into another infinite loop where we
    # compute the actions for all the individual steps in this episode
    # until the episode is `done`
    steps = 0

    # Bookkeeping
    time_taken_by_controller = []
    time_taken_per_step = []

    # Action cache: keep track of last observation to avoid running the same inferrence multiple times.
    # This only makes sense for deterministic policies.
    agent_last_obs = {}
    agent_last_action = {}
    nb_hit = 0

    if USE_DEAD_LOCK_AVOIDANCE_AGENT:
        policy = DeadLockAvoidanceAgent(local_env)

    while True:
        try:
            #####################################################################
            # Evaluation of a single episode
            #####################################################################
            steps += 1
            obs_time, agent_time, step_time = 0.0, 0.0, 0.0
            no_ops_mode = False

            if not check_if_all_blocked(env=local_env):
                time_start = time.time()
                action_dict = {}
                policy.start_step()
                if USE_DEAD_LOCK_AVOIDANCE_AGENT:
                    observation = np.zeros((local_env.get_num_agents(), 2))
                for agent in range(nb_agents):

                    if USE_DEAD_LOCK_AVOIDANCE_AGENT:
                        observation[agent][0] = agent
                        observation[agent][1] = steps

                    if info['action_required'][agent]:
                        if agent in agent_last_obs and np.all(agent_last_obs[agent] == observation[agent]):
                            # cache hit
                            action = agent_last_action[agent]
                            nb_hit += 1
                        else:
Adrian Egli's avatar
.  
Adrian Egli committed
                            action = policy.act(observation[agent], eps=0.01)
Adrian Egli's avatar
.  
Adrian Egli committed
                            #if observation[agent][26] == 1:
                            #    action = RailEnvActions.STOP_MOVING
Adrian Egli's avatar
rl  
Adrian Egli committed

                        action_dict[agent] = action

                        if USE_ACTION_CACHE:
                            agent_last_obs[agent] = observation[agent]
                            agent_last_action[agent] = action
                policy.end_step()
                agent_time = time.time() - time_start
                time_taken_by_controller.append(agent_time)

                time_start = time.time()
                _, all_rewards, done, info = remote_client.env_step(action_dict)
                step_time = time.time() - time_start
                time_taken_per_step.append(step_time)

                time_start = time.time()
                observation = tree_observation.get_many(list(range(nb_agents)))
                obs_time = time.time() - time_start

            else:
                # Fully deadlocked: perform no-ops
                no_ops_mode = True

                time_start = time.time()
                _, all_rewards, done, info = remote_client.env_step({})
                step_time = time.time() - time_start
                time_taken_per_step.append(step_time)

            nb_agents_done = sum(done[idx] for idx in local_env.get_agent_handles())

            if VERBOSE or done['__all__']:
                print(
                    "Step {}/{}\tAgents done: {}\t Obs time {:.3f}s\t Inference time {:.5f}s\t Step time {:.3f}s\t Cache hits {}\t No-ops? {}".format(
                        str(steps).zfill(4),
                        max_nb_steps,
                        nb_agents_done,
                        obs_time,
                        agent_time,
                        step_time,
                        nb_hit,
                        no_ops_mode
                    ), end="\r")

            if done['__all__']:
                # When done['__all__'] == True, then the evaluation of this
                # particular Env instantiation is complete, and we can break out
                # of this loop, and move onto the next Env evaluation
                print()
                break

        except TimeoutException as err:
            # A timeout occurs, won't get any reward for this episode :-(
            # Skip to next episode as further actions in this one will be ignored.
            # The whole evaluation will be stopped if there are 10 consecutive timeouts.
            print("Timeout! Will skip this episode and go to the next.", err)
            break

    np_time_taken_by_controller = np.array(time_taken_by_controller)
    np_time_taken_per_step = np.array(time_taken_per_step)
    print("Mean/Std of Time taken by Controller : ", np_time_taken_by_controller.mean(),
          np_time_taken_by_controller.std())
    print("Mean/Std of Time per Step : ", np_time_taken_per_step.mean(), np_time_taken_per_step.std())
    print("=" * 100)

print("Evaluation of all environments complete!")
########################################################################
# Submit your Results
#
# Please do not forget to include this call, as this triggers the
# final computation of the score statistics, video generation, etc
# and is necessary to have your submission marked as successfully evaluated
########################################################################
print(remote_client.submit())