Newer
Older
'''
DDDQNPolicy experiments - EPSILON impact analysis
----------------------------------------------------------------------------------------
checkpoint = "./checkpoints/201124171810-7800.pth" # Training on AGENTS=10 with Depth=2
EPSILON = 0.000 # Sum Normalized Reward : 0.000000000000000 (primary score)
EPSILON = 0.002 # Sum Normalized Reward : 18.445875081269286 (primary score)
EPSILON = 0.005 # Sum Normalized Reward : 18.371733625865854 (primary score)
EPSILON = 0.010 # Sum Normalized Reward : 18.249244799876152 (primary score)
EPSILON = 0.020 # Sum Normalized Reward : 17.526987022691376 (primary score)
EPSILON = 0.030 # Sum Normalized Reward : 16.796885571003942 (primary score)
EPSILON = 0.040 # Sum Normalized Reward : 17.280787151431426 (primary score)
EPSILON = 0.050 # Sum Normalized Reward : 16.256945636647025 (primary score)
EPSILON = 0.100 # Sum Normalized Reward : 14.828347241759966 (primary score)
EPSILON = 0.200 # Sum Normalized Reward : 11.192330074898457 (primary score)
EPSILON = 0.300 # Sum Normalized Reward : 14.523067754608782 (primary score)
EPSILON = 0.400 # Sum Normalized Reward : 12.901508220410834 (primary score)
EPSILON = 0.500 # Sum Normalized Reward : 3.754660231871272 (primary score)
EPSILON = 1.000 # Sum Normalized Reward : 1.397180159192391 (primary score)
'''
import sys
import time
from argparse import Namespace
from pathlib import Path
import numpy as np
from flatland.core.env_observation_builder import DummyObservationBuilder
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.evaluators.client import FlatlandRemoteClient
from flatland.evaluators.client import TimeoutException
from reinforcement_learning.ppo_agent import PPOAgent
from utils.dead_lock_avoidance_agent import DeadLockAvoidanceAgent
from utils.deadlock_check import check_if_all_blocked
from utils.fast_tree_obs import FastTreeObs
from utils.observation_utils import normalize_observation
base_dir = Path(__file__).resolve().parent.parent
sys.path.append(str(base_dir))
from reinforcement_learning.dddqn_policy import DDDQNPolicy
####################################################
# EVALUATION PARAMETERS
# Print per-step logs
VERBOSE = True
checkpoint = "./checkpoints/201124171810-7800.pth" # DDDQN: 18.249244799876152 DEPTH=2 AGENTS=10
# checkpoint = "./checkpoints/201126150143-5200.pth" # DDDQN: 18.249244799876152 DEPTH=2 AGENTS=10
# checkpoint = "./checkpoints/201126160144-2000.pth" # DDDQN: 18.249244799876152 DEPTH=2 AGENTS=10
checkpoint = "./checkpoints/201207144650-20000.pth" # PPO: 14.45790721540786
checkpoint = "./checkpoints/201211063511-6300.pth" # DDDQN: 16.948349308440857
checkpoint = "./checkpoints/201211095604-12000.pth" # DDDQN: 17.3862941316504
checkpoint = "./checkpoints/201211164554-9400.pth" # DDDQN: 16.09241366013537
checkpoint = "./checkpoints/201213181400-6800.pth" # PPO: 13.944402986414723
USE_DEAD_LOCK_AVOIDANCE_AGENT = False # 21.54485505223213
observation_radius = 10
observation_max_path_depth = 30
####################################################
remote_client = FlatlandRemoteClient()
# Observation builder
predictor = ShortestPathPredictorForRailEnv(observation_max_path_depth)
if USE_FAST_TREEOBS:
def check_is_observation_valid(observation):
return True
def get_normalized_observation(observation, tree_depth: int, observation_radius=0):
return observation
tree_observation = FastTreeObs(max_depth=observation_tree_depth)
state_size = tree_observation.observation_dim
else:
def check_is_observation_valid(observation):
return observation
def get_normalized_observation(observation, tree_depth: int, observation_radius=0):
return normalize_observation(observation, tree_depth, observation_radius)
tree_observation = TreeObsForRailEnv(max_depth=observation_tree_depth, predictor=predictor)
# Calculate the state size given the depth of the tree observation and the number of features
n_features_per_node = tree_observation.observation_dim
n_nodes = sum([np.power(4, i) for i in range(observation_tree_depth + 1)])
state_size = n_features_per_node * n_nodes
action_size = 5
# Creates the policy. No GPU on evaluation server.
if not USE_PPO_AGENT:
policy = DDDQNPolicy(state_size, action_size, Namespace(**{'use_gpu': False}), evaluation_mode=True)
else:
policy = PPOAgent(state_size, action_size)
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
policy.load(checkpoint)
#####################################################################
# Main evaluation loop
#####################################################################
evaluation_number = 0
while True:
evaluation_number += 1
# We use a dummy observation and call TreeObsForRailEnv ourselves when needed.
# This way we decide if we want to calculate the observations or not instead
# of having them calculated every time we perform an env step.
time_start = time.time()
observation, info = remote_client.env_create(
obs_builder_object=DummyObservationBuilder()
)
env_creation_time = time.time() - time_start
if not observation:
# If the remote_client returns False on a `env_create` call,
# then it basically means that your agent has already been
# evaluated on all the required evaluation environments,
# and hence it's safe to break out of the main evaluation loop.
break
print("Env Path : ", remote_client.current_env_path)
print("Env Creation Time : ", env_creation_time)
local_env = remote_client.env
nb_agents = len(local_env.agents)
max_nb_steps = local_env._max_episode_steps
tree_observation.set_env(local_env)
tree_observation.reset()
observation = tree_observation.get_many(list(range(nb_agents)))
print("Evaluation {}: {} agents in {}x{}".format(evaluation_number, nb_agents, local_env.width, local_env.height))
# Now we enter into another infinite loop where we
# compute the actions for all the individual steps in this episode
# until the episode is `done`
steps = 0
# Bookkeeping
time_taken_by_controller = []
time_taken_per_step = []
# Action cache: keep track of last observation to avoid running the same inferrence multiple times.
# This only makes sense for deterministic policies.
agent_last_obs = {}
agent_last_action = {}
nb_hit = 0
if USE_DEAD_LOCK_AVOIDANCE_AGENT:
policy = DeadLockAvoidanceAgent(local_env, action_size)
while True:
try:
#####################################################################
# Evaluation of a single episode
#####################################################################
steps += 1
obs_time, agent_time, step_time = 0.0, 0.0, 0.0
no_ops_mode = False
if not check_if_all_blocked(env=local_env):
time_start = time.time()
action_dict = {}
if USE_DEAD_LOCK_AVOIDANCE_AGENT:
observation = np.zeros((local_env.get_num_agents(), 2))
for agent_handle in range(nb_agents):
observation[agent_handle][0] = agent_handle
observation[agent_handle][1] = steps
if info['action_required'][agent_handle]:
if agent_handle in agent_last_obs and np.all(
agent_last_obs[agent_handle] == observation[agent_handle]):
action = agent_last_action[agent_handle]
normalized_observation = get_normalized_observation(observation[agent_handle],
observation_tree_depth,
observation_radius=observation_radius)
action = policy.act(normalized_observation, eps=EPSILON)
action_dict[agent_handle] = action
if USE_ACTION_CACHE:
agent_last_obs[agent_handle] = observation[agent_handle]
agent_last_action[agent_handle] = action
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
agent_time = time.time() - time_start
time_taken_by_controller.append(agent_time)
time_start = time.time()
_, all_rewards, done, info = remote_client.env_step(action_dict)
step_time = time.time() - time_start
time_taken_per_step.append(step_time)
time_start = time.time()
observation = tree_observation.get_many(list(range(nb_agents)))
obs_time = time.time() - time_start
else:
# Fully deadlocked: perform no-ops
no_ops_mode = True
time_start = time.time()
_, all_rewards, done, info = remote_client.env_step({})
step_time = time.time() - time_start
time_taken_per_step.append(step_time)
nb_agents_done = sum(done[idx] for idx in local_env.get_agent_handles())
if VERBOSE or done['__all__']:
print(
"Step {}/{}\tAgents done: {}\t Obs time {:.3f}s\t Inference time {:.5f}s\t Step time {:.3f}s\t Cache hits {}\t No-ops? {}".format(
str(steps).zfill(4),
max_nb_steps,
nb_agents_done,
obs_time,
agent_time,
step_time,
nb_hit,
no_ops_mode
), end="\r")
if done['__all__']:
# When done['__all__'] == True, then the evaluation of this
# particular Env instantiation is complete, and we can break out
# of this loop, and move onto the next Env evaluation
print()
break
except TimeoutException as err:
# A timeout occurs, won't get any reward for this episode :-(
# Skip to next episode as further actions in this one will be ignored.
# The whole evaluation will be stopped if there are 10 consecutive timeouts.
print("Timeout! Will skip this episode and go to the next.", err)
break
np_time_taken_by_controller = np.array(time_taken_by_controller)
np_time_taken_per_step = np.array(time_taken_per_step)
print("Mean/Std of Time taken by Controller : ", np_time_taken_by_controller.mean(),
np_time_taken_by_controller.std())
print("Mean/Std of Time per Step : ", np_time_taken_per_step.mean(), np_time_taken_per_step.std())
print("=" * 100)
print("Evaluation of all environments complete!")
########################################################################
# Submit your Results
#
# Please do not forget to include this call, as this triggers the
# final computation of the score statistics, video generation, etc
# and is necessary to have your submission marked as successfully evaluated
########################################################################
print(remote_client.submit())