Newer
Older
import os
import random
import sys
from argparse import ArgumentParser, Namespace
from collections import deque
from datetime import datetime
from pathlib import Path
from pprint import pprint
import numpy as np
import psutil
from flatland.envs.malfunction_generators import malfunction_from_params, MalfunctionParameters
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv, RailEnvActions
from flatland.envs.rail_generators import sparse_rail_generator
from flatland.envs.schedule_generators import sparse_schedule_generator
from flatland.utils.rendertools import RenderTool
from torch.utils.tensorboard import SummaryWriter
from reinforcement_learning.dddqn_policy import DDDQNPolicy
from utils.dead_lock_avoidance_agent import DeadLockAvoidanceAgent
base_dir = Path(__file__).resolve().parent.parent
sys.path.append(str(base_dir))
from utils.timer import Timer
from utils.observation_utils import normalize_observation
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
try:
import wandb
wandb.init(sync_tensorboard=True)
except ImportError:
print("Install wandb to log to Weights & Biases")
"""
This file shows how to train multiple agents using a reinforcement learning approach.
After training an agent, you can submit it straight away to the NeurIPS 2020 Flatland challenge!
Agent documentation: https://flatland.aicrowd.com/getting-started/rl/multi-agent.html
Submission documentation: https://flatland.aicrowd.com/getting-started/first-submission.html
"""
def create_rail_env(env_params, tree_observation):
n_agents = env_params.n_agents
x_dim = env_params.x_dim
y_dim = env_params.y_dim
n_cities = env_params.n_cities
max_rails_between_cities = env_params.max_rails_between_cities
max_rails_in_city = env_params.max_rails_in_city
seed = env_params.seed
# Break agents from time to time
malfunction_parameters = MalfunctionParameters(
malfunction_rate=env_params.malfunction_rate,
min_duration=20,
max_duration=50
)
return RailEnv(
width=x_dim, height=y_dim,
rail_generator=sparse_rail_generator(
max_num_cities=n_cities,
grid_mode=False,
max_rails_between_cities=max_rails_between_cities,
max_rails_in_city=max_rails_in_city
),
schedule_generator=sparse_schedule_generator(),
number_of_agents=n_agents,
malfunction_generator_and_process_data=malfunction_from_params(malfunction_parameters),
obs_builder_object=tree_observation,
random_seed=seed
)
def train_agent(train_params, train_env_params, eval_env_params, obs_params):
# Environment parameters
n_agents = train_env_params.n_agents
x_dim = train_env_params.x_dim
y_dim = train_env_params.y_dim
n_cities = train_env_params.n_cities
max_rails_between_cities = train_env_params.max_rails_between_cities
max_rails_in_city = train_env_params.max_rails_in_city
seed = train_env_params.seed
# Unique ID for this training
now = datetime.now()
training_id = now.strftime('%y%m%d%H%M%S')
# Observation parameters
observation_tree_depth = obs_params.observation_tree_depth
observation_radius = obs_params.observation_radius
observation_max_path_depth = obs_params.observation_max_path_depth
# Training parameters
eps_start = train_params.eps_start
eps_end = train_params.eps_end
eps_decay = train_params.eps_decay
n_episodes = train_params.n_episodes
checkpoint_interval = train_params.checkpoint_interval
n_eval_episodes = train_params.n_evaluation_episodes
restore_replay_buffer = train_params.restore_replay_buffer
save_replay_buffer = train_params.save_replay_buffer
# Set the seeds
random.seed(seed)
np.random.seed(seed)
# Observation builder
predictor = ShortestPathPredictorForRailEnv(observation_max_path_depth)
if not train_params.use_fast_tree_observation:
print("\nUsing standard TreeObs")
def check_is_observation_valid(observation):
return observation
def get_normalized_observation(observation, tree_depth: int, observation_radius=0):
return normalize_observation(observation, tree_depth, observation_radius)
tree_observation = TreeObsForRailEnv(max_depth=observation_tree_depth, predictor=predictor)
tree_observation.check_is_observation_valid = check_is_observation_valid
tree_observation.get_normalized_observation = get_normalized_observation
else:
print("\nUsing FastTreeObs")
def check_is_observation_valid(observation):
return True
def get_normalized_observation(observation, tree_depth: int, observation_radius=0):
return observation
tree_observation = FastTreeObs(max_depth=observation_tree_depth)
tree_observation.check_is_observation_valid = check_is_observation_valid
tree_observation.get_normalized_observation = get_normalized_observation
# Setup the environments
train_env = create_rail_env(train_env_params, tree_observation)
train_env.reset(regenerate_schedule=True, regenerate_rail=True)
eval_env = create_rail_env(eval_env_params, tree_observation)
eval_env.reset(regenerate_schedule=True, regenerate_rail=True)
if not train_params.use_fast_tree_observation:
# Calculate the state size given the depth of the tree observation and the number of features
n_features_per_node = train_env.obs_builder.observation_dim
n_nodes = sum([np.power(4, i) for i in range(observation_tree_depth + 1)])
state_size = n_features_per_node * n_nodes
else:
# Calculate the state size given the depth of the tree observation and the number of features
state_size = tree_observation.observation_dim
# Setup renderer
if train_params.render:
env_renderer = RenderTool(train_env, gl="PGL")
# The action space of flatland is 5 discrete actions
action_size = 5
action_count = [0] * action_size
action_dict = dict()
agent_obs = [None] * n_agents
agent_prev_obs = [None] * n_agents
agent_prev_action = [2] * n_agents
update_values = [False] * n_agents
# Smoothed values used as target for hyperparameter tuning
smoothed_eval_normalized_score = -1.0
smoothed_eval_completion = 0.0
scores_window = deque(maxlen=checkpoint_interval) # todo smooth when rendering instead
completion_window = deque(maxlen=checkpoint_interval)
policy = DDDQNPolicy(state_size, action_size, train_params)
# policy = PPOAgent(state_size, action_size, n_agents)
# Load existing policy
if train_params.load_policy is not "":
policy.load(train_params.load_policy)
# Loads existing replay buffer
if restore_replay_buffer:
try:
policy.load_replay_buffer(restore_replay_buffer)
policy.test()
except RuntimeError as e:
print("\n🛑 Could't load replay buffer, were the experiences generated using the same tree depth?")
print(e)
exit(1)
print("\n💾 Replay buffer status: {}/{} experiences".format(len(policy.memory.memory), train_params.buffer_size))
hdd = psutil.disk_usage('/')
if save_replay_buffer and (hdd.free / (2 ** 30)) < 500.0:
print(
"⚠️ Careful! Saving replay buffers will quickly consume a lot of disk space. You have {:.2f}gb left.".format(
hdd.free / (2 ** 30)))
# TensorBoard writer
writer = SummaryWriter()
training_timer = Timer()
training_timer.start()
print(
"\n🚉 Training {} trains on {}x{} grid for {} episodes, evaluating on {} episodes every {} episodes. Training id '{}'.\n".format(
train_env.get_num_agents(),
x_dim, y_dim,
n_episodes,
n_eval_episodes,
checkpoint_interval,
training_id
))
for episode_idx in range(n_episodes + 1):
step_timer = Timer()
reset_timer = Timer()
learn_timer = Timer()
preproc_timer = Timer()
inference_timer = Timer()
# Reset environment
reset_timer.start()
train_env_params.n_agents = episode_idx % n_agents + 1
train_env = create_rail_env(train_env_params, tree_observation)
obs, info = train_env.reset(regenerate_rail=True, regenerate_schedule=True)
policy2 = DeadLockAvoidanceAgent(train_env)
policy2.reset()
reset_timer.end()
if train_params.render:
env_renderer.set_new_rail()
score = 0
nb_steps = 0
actions_taken = []
# Build initial agent-specific observations
for agent in train_env.get_agent_handles():
if tree_observation.check_is_observation_valid(obs[agent]):
agent_obs[agent] = tree_observation.get_normalized_observation(obs[agent], observation_tree_depth,
observation_radius=observation_radius)
agent_prev_obs[agent] = agent_obs[agent].copy()
# Max number of steps per episode
# This is the official formula used during evaluations
# See details in flatland.envs.schedule_generators.sparse_schedule_generator
# max_steps = int(4 * 2 * (env.height + env.width + (n_agents / n_cities)))
max_steps = train_env._max_episode_steps
agent_to_learn = 0
if train_env.get_num_agents() > 1:
agent_to_learn = np.random.choice(train_env.get_num_agents())
for step in range(max_steps - 1):
inference_timer.start()
policy2.start_step()
for agent in train_env.get_agent_handles():
if info['action_required'][agent]:
update_values[agent] = True
if agent == agent_to_learn:
action = policy.act(agent_obs[agent], eps=eps_start)
else:
action = policy2.act([agent], eps=eps_start)
action_count[action] += 1
actions_taken.append(action)
else:
# An action is not required if the train hasn't joined the railway network,
# if it already reached its target, or if is currently malfunctioning.
update_values[agent] = False
action = 0
action_dict.update({agent: action})
policy2.end_step()
inference_timer.end()
# Environment step
step_timer.start()
next_obs, all_rewards, done, info = train_env.step(action_dict)
for agent in train_env.get_agent_handles():
act = action_dict.get(agent, RailEnvActions.DO_NOTHING)
if agent_obs[agent][26] == 1:
if act == RailEnvActions.STOP_MOVING:
all_rewards[agent] *= 0.01
else:
if act == RailEnvActions.MOVE_LEFT:
all_rewards[agent] *= 0.9
else:
if agent_obs[agent][7] == 0 and agent_obs[agent][8] == 0:
if act == RailEnvActions.MOVE_FORWARD:
all_rewards[agent] *= 0.01
if done[agent]:
all_rewards[agent] += 100.0
step_timer.end()
# Render an episode at some interval
if train_params.render and episode_idx % checkpoint_interval == 0:
env_renderer.render_env(
show=True,
frames=False,
show_observations=False,
show_predictions=False
)
# Update replay buffer and train agent
for agent in train_env.get_agent_handles():
if update_values[agent] or done['__all__']:
# Only learn from timesteps where somethings happened
learn_timer.start()
if agent == agent_to_learn:
policy.step(agent,
agent_prev_obs[agent], agent_prev_action[agent], all_rewards[agent],
agent_obs[agent],
done[agent])
learn_timer.end()
agent_prev_obs[agent] = agent_obs[agent].copy()
agent_prev_action[agent] = action_dict[agent]
# Preprocess the new observations
if tree_observation.check_is_observation_valid(next_obs[agent]):
agent_obs[agent] = tree_observation.get_normalized_observation(next_obs[agent],
observation_tree_depth,
observation_radius=observation_radius)
preproc_timer.end()
score += all_rewards[agent]
nb_steps = step
if done['__all__']:
break
# Epsilon decay
eps_start = max(eps_end, eps_decay * eps_start)
# Collect information about training
tasks_finished = sum(done[idx] for idx in train_env.get_agent_handles())
completion = tasks_finished / max(1, train_env.get_num_agents())
normalized_score = score / (max_steps * train_env.get_num_agents())
scores_window.append(normalized_score)
completion_window.append(completion)
smoothed_normalized_score = np.mean(scores_window)
smoothed_completion = np.mean(completion_window)
# Print logs
if episode_idx % checkpoint_interval == 0:
policy.save('./checkpoints/' + training_id + '-' + str(episode_idx) + '.pth')
if save_replay_buffer:
policy.save_replay_buffer('./replay_buffers/' + training_id + '-' + str(episode_idx) + '.pkl')
if train_params.render:
env_renderer.close_window()
# reset action count
action_count = [0] * action_size
'\t 🏆 Score: {:7.3f}'
' Avg: {:7.3f}'
'\t 💯 Done: {:6.2f}%'
' Avg: {:6.2f}%'
'\t 🎲 Epsilon: {:.3f} '
'\t 🔀 Action Probs: {}'.format(
episode_idx,
normalized_score,
smoothed_normalized_score,
100 * completion,
100 * smoothed_completion,
eps_start,
format_action_prob(action_probs)
), end=" ")
# Evaluate policy and log results at some interval
if episode_idx % checkpoint_interval == 0 and n_eval_episodes > 0:
scores, completions, nb_steps_eval = eval_policy(eval_env,
tree_observation,
policy,
train_params,
obs_params)
writer.add_scalar("evaluation/scores_min", np.min(scores), episode_idx)
writer.add_scalar("evaluation/scores_max", np.max(scores), episode_idx)
writer.add_scalar("evaluation/scores_mean", np.mean(scores), episode_idx)
writer.add_scalar("evaluation/scores_std", np.std(scores), episode_idx)
writer.add_histogram("evaluation/scores", np.array(scores), episode_idx)
writer.add_scalar("evaluation/completions_min", np.min(completions), episode_idx)
writer.add_scalar("evaluation/completions_max", np.max(completions), episode_idx)
writer.add_scalar("evaluation/completions_mean", np.mean(completions), episode_idx)
writer.add_scalar("evaluation/completions_std", np.std(completions), episode_idx)
writer.add_histogram("evaluation/completions", np.array(completions), episode_idx)
writer.add_scalar("evaluation/nb_steps_min", np.min(nb_steps_eval), episode_idx)
writer.add_scalar("evaluation/nb_steps_max", np.max(nb_steps_eval), episode_idx)
writer.add_scalar("evaluation/nb_steps_mean", np.mean(nb_steps_eval), episode_idx)
writer.add_scalar("evaluation/nb_steps_std", np.std(nb_steps_eval), episode_idx)
writer.add_histogram("evaluation/nb_steps", np.array(nb_steps_eval), episode_idx)
smoothing = 0.9
smoothed_eval_normalized_score = smoothed_eval_normalized_score * smoothing + np.mean(scores) * (
1.0 - smoothing)
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
smoothed_eval_completion = smoothed_eval_completion * smoothing + np.mean(completions) * (1.0 - smoothing)
writer.add_scalar("evaluation/smoothed_score", smoothed_eval_normalized_score, episode_idx)
writer.add_scalar("evaluation/smoothed_completion", smoothed_eval_completion, episode_idx)
# Save logs to tensorboard
writer.add_scalar("training/score", normalized_score, episode_idx)
writer.add_scalar("training/smoothed_score", smoothed_normalized_score, episode_idx)
writer.add_scalar("training/completion", np.mean(completion), episode_idx)
writer.add_scalar("training/smoothed_completion", np.mean(smoothed_completion), episode_idx)
writer.add_scalar("training/nb_steps", nb_steps, episode_idx)
writer.add_histogram("actions/distribution", np.array(actions_taken), episode_idx)
writer.add_scalar("actions/nothing", action_probs[RailEnvActions.DO_NOTHING], episode_idx)
writer.add_scalar("actions/left", action_probs[RailEnvActions.MOVE_LEFT], episode_idx)
writer.add_scalar("actions/forward", action_probs[RailEnvActions.MOVE_FORWARD], episode_idx)
writer.add_scalar("actions/right", action_probs[RailEnvActions.MOVE_RIGHT], episode_idx)
writer.add_scalar("actions/stop", action_probs[RailEnvActions.STOP_MOVING], episode_idx)
writer.add_scalar("training/epsilon", eps_start, episode_idx)
writer.add_scalar("training/buffer_size", len(policy.memory), episode_idx)
writer.add_scalar("training/loss", policy.loss, episode_idx)
writer.add_scalar("timer/reset", reset_timer.get(), episode_idx)
writer.add_scalar("timer/step", step_timer.get(), episode_idx)
writer.add_scalar("timer/learn", learn_timer.get(), episode_idx)
writer.add_scalar("timer/preproc", preproc_timer.get(), episode_idx)
writer.add_scalar("timer/total", training_timer.get_current(), episode_idx)
def format_action_prob(action_probs):
action_probs = np.round(action_probs, 3)
actions = ["↻", "←", "↑", "→", "◼"]
buffer = ""
for action, action_prob in zip(actions, action_probs):
buffer += action + " " + "{:.3f}".format(action_prob) + " "
return buffer
def eval_policy(env, tree_observation, policy, train_params, obs_params):
n_eval_episodes = train_params.n_evaluation_episodes
max_steps = env._max_episode_steps
tree_depth = obs_params.observation_tree_depth
observation_radius = obs_params.observation_radius
action_dict = dict()
scores = []
completions = []
nb_steps = []
for episode_idx in range(n_eval_episodes):
agent_obs = [None] * env.get_num_agents()
score = 0.0
obs, info = env.reset(regenerate_rail=True, regenerate_schedule=True)
final_step = 0
for step in range(max_steps - 1):
if tree_observation.check_is_observation_valid(agent_obs[agent]):
agent_obs[agent] = tree_observation.get_normalized_observation(obs[agent], tree_depth=tree_depth,
observation_radius=observation_radius)
action = 0
if info['action_required'][agent]:
if tree_observation.check_is_observation_valid(agent_obs[agent]):
action = policy.act(agent_obs[agent], eps=0.0)
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
obs, all_rewards, done, info = env.step(action_dict)
for agent in env.get_agent_handles():
score += all_rewards[agent]
final_step = step
if done['__all__']:
break
normalized_score = score / (max_steps * env.get_num_agents())
scores.append(normalized_score)
tasks_finished = sum(done[idx] for idx in env.get_agent_handles())
completion = tasks_finished / max(1, env.get_num_agents())
completions.append(completion)
nb_steps.append(final_step)
print("\t✅ Eval: score {:.3f} done {:.1f}%".format(np.mean(scores), np.mean(completions) * 100.0))
return scores, completions, nb_steps
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("-n", "--n_episodes", help="number of episodes to run", default=5400, type=int)
parser.add_argument("-t", "--training_env_config", help="training config id (eg 0 for Test_0)", default=1, type=int)
parser.add_argument("-e", "--evaluation_env_config", help="evaluation config id (eg 0 for Test_0)", default=0,
parser.add_argument("--n_evaluation_episodes", help="number of evaluation episodes", default=1, type=int)
parser.add_argument("--checkpoint_interval", help="checkpoint interval", default=100, type=int)
parser.add_argument("--eps_start", help="max exploration", default=0.1, type=float)
parser.add_argument("--eps_end", help="min exploration", default=0.01, type=float)
parser.add_argument("--eps_decay", help="exploration decay", default=0.9998, type=float)
parser.add_argument("--buffer_size", help="replay buffer size", default=int(1e7), type=int)
parser.add_argument("--buffer_min_size", help="min buffer size to start training", default=0, type=int)
parser.add_argument("--restore_replay_buffer", help="replay buffer to restore", default="", type=str)
parser.add_argument("--save_replay_buffer", help="save replay buffer at each evaluation interval", default=False,
type=bool)
parser.add_argument("--batch_size", help="minibatch size", default=128, type=int)
parser.add_argument("--gamma", help="discount factor", default=0.99, type=float)
parser.add_argument("--tau", help="soft update of target parameters", default=1e-3, type=float)
parser.add_argument("--learning_rate", help="learning rate", default=0.5e-4, type=float)
parser.add_argument("--hidden_size", help="hidden size (2 fc layers)", default=128, type=int)
parser.add_argument("--update_every", help="how often to update the network", default=8, type=int)
parser.add_argument("--use_gpu", help="use GPU if available", default=False, type=bool)
parser.add_argument("--num_threads", help="number of threads PyTorch can use", default=1, type=int)
parser.add_argument("--render", help="render 1 episode in 100", action='store_true')
parser.add_argument("--load_policy", help="policy filename (reference) to load", default="", type=str)
parser.add_argument("--use_fast_tree_observation", help="use FastTreeObs instead of stock TreeObs",
action='store_true')
parser.add_argument("--max_depth", help="max depth", default=1, type=int)
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
env_params = [
{
# Test_0
"n_agents": 5,
"x_dim": 25,
"y_dim": 25,
"n_cities": 2,
"max_rails_between_cities": 2,
"max_rails_in_city": 3,
"malfunction_rate": 1 / 50,
"seed": 0
},
{
# Test_1
"n_agents": 10,
"x_dim": 30,
"y_dim": 30,
"n_cities": 2,
"max_rails_between_cities": 2,
"max_rails_in_city": 3,
"malfunction_rate": 1 / 100,
"seed": 0
},
{
# Test_2
"n_agents": 20,
"x_dim": 30,
"y_dim": 30,
"n_cities": 3,
"max_rails_between_cities": 2,
"max_rails_in_city": 3,
"malfunction_rate": 1 / 200,
"seed": 0
},
]
obs_params = {
"observation_radius": 10,
"observation_max_path_depth": 30
}
def check_env_config(id):
if id >= len(env_params) or id < 0:
print("\n🛑 Invalid environment configuration, only Test_0 to Test_{} are supported.".format(
len(env_params) - 1))
exit(1)
check_env_config(training_params.training_env_config)
check_env_config(training_params.evaluation_env_config)
training_env_params = env_params[training_params.training_env_config]
evaluation_env_params = env_params[training_params.evaluation_env_config]
# FIXME hard-coded for sweep search
# see https://wb-forum.slack.com/archives/CL4V2QE59/p1602931982236600 to implement properly
# training_params.use_fast_tree_observation = True
print("\nTraining parameters:")
pprint(vars(training_params))
print("\nTraining environment parameters (Test_{}):".format(training_params.training_env_config))
pprint(training_env_params)
print("\nEvaluation environment parameters (Test_{}):".format(training_params.evaluation_env_config))
pprint(evaluation_env_params)
print("\nObservation parameters:")
pprint(obs_params)
os.environ["OMP_NUM_THREADS"] = str(training_params.num_threads)
train_agent(training_params, Namespace(**training_env_params), Namespace(**evaluation_env_params),
Namespace(**obs_params))