Skip to content
Snippets Groups Projects
multi_agent_training.py 21.3 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
from datetime import datetime
import os
import random
import sys
from argparse import ArgumentParser, Namespace
from pathlib import Path
from pprint import pprint

import psutil
from flatland.utils.rendertools import RenderTool
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import torch

from flatland.envs.rail_env import RailEnv, RailEnvActions
from flatland.envs.rail_generators import sparse_rail_generator
from flatland.envs.schedule_generators import sparse_schedule_generator
from flatland.envs.observations import TreeObsForRailEnv

from flatland.envs.malfunction_generators import malfunction_from_params, MalfunctionParameters
from flatland.envs.predictions import ShortestPathPredictorForRailEnv

base_dir = Path(__file__).resolve().parent.parent
sys.path.append(str(base_dir))

from utils.timer import Timer
from utils.observation_utils import normalize_observation
from reinforcement_learning.dddqn_policy import DDDQNPolicy

try:
    import wandb

    wandb.init(sync_tensorboard=True)
except ImportError:
    print("Install wandb to log to Weights & Biases")

"""
This file shows how to train multiple agents using a reinforcement learning approach.
After training an agent, you can submit it straight away to the NeurIPS 2020 Flatland challenge!

Agent documentation: https://flatland.aicrowd.com/getting-started/rl/multi-agent.html
Submission documentation: https://flatland.aicrowd.com/getting-started/first-submission.html
"""


def create_rail_env(env_params, tree_observation):
    n_agents = env_params.n_agents
    x_dim = env_params.x_dim
    y_dim = env_params.y_dim
    n_cities = env_params.n_cities
    max_rails_between_cities = env_params.max_rails_between_cities
    max_rails_in_city = env_params.max_rails_in_city
    seed = env_params.seed

    # Break agents from time to time
    malfunction_parameters = MalfunctionParameters(
        malfunction_rate=env_params.malfunction_rate,
        min_duration=20,
        max_duration=50
    )

    return RailEnv(
        width=x_dim, height=y_dim,
        rail_generator=sparse_rail_generator(
            max_num_cities=n_cities,
            grid_mode=False,
            max_rails_between_cities=max_rails_between_cities,
            max_rails_in_city=max_rails_in_city
        ),
        schedule_generator=sparse_schedule_generator(),
        number_of_agents=n_agents,
        malfunction_generator_and_process_data=malfunction_from_params(malfunction_parameters),
        obs_builder_object=tree_observation,
        random_seed=seed
    )


def train_agent(train_params, train_env_params, eval_env_params, obs_params):
    # Environment parameters
    n_agents = train_env_params.n_agents
    x_dim = train_env_params.x_dim
    y_dim = train_env_params.y_dim
    n_cities = train_env_params.n_cities
    max_rails_between_cities = train_env_params.max_rails_between_cities
    max_rails_in_city = train_env_params.max_rails_in_city
    seed = train_env_params.seed

    # Unique ID for this training
    now = datetime.now()
    training_id = now.strftime('%y%m%d%H%M%S')

    # Observation parameters
    observation_tree_depth = obs_params.observation_tree_depth
    observation_radius = obs_params.observation_radius
    observation_max_path_depth = obs_params.observation_max_path_depth

    # Training parameters
    eps_start = train_params.eps_start
    eps_end = train_params.eps_end
    eps_decay = train_params.eps_decay
    n_episodes = train_params.n_episodes
    checkpoint_interval = train_params.checkpoint_interval
    n_eval_episodes = train_params.n_evaluation_episodes
    restore_replay_buffer = train_params.restore_replay_buffer
    save_replay_buffer = train_params.save_replay_buffer

    # Set the seeds
    random.seed(seed)
    np.random.seed(seed)

    # Observation builder
    predictor = ShortestPathPredictorForRailEnv(observation_max_path_depth)
    tree_observation = TreeObsForRailEnv(max_depth=observation_tree_depth, predictor=predictor)

    # Setup the environments
    train_env = create_rail_env(train_env_params, tree_observation)
    train_env.reset(regenerate_schedule=True, regenerate_rail=True)
    eval_env = create_rail_env(eval_env_params, tree_observation)
    eval_env.reset(regenerate_schedule=True, regenerate_rail=True)

    # Setup renderer
    if train_params.render:
        env_renderer = RenderTool(train_env, gl="PGL")

    # Calculate the state size given the depth of the tree observation and the number of features
    n_features_per_node = train_env.obs_builder.observation_dim
    n_nodes = sum([np.power(4, i) for i in range(observation_tree_depth + 1)])
    state_size = n_features_per_node * n_nodes

    # The action space of flatland is 5 discrete actions
    action_size = 5

    # Max number of steps per episode
    # This is the official formula used during evaluations
    # See details in flatland.envs.schedule_generators.sparse_schedule_generator
    # max_steps = int(4 * 2 * (env.height + env.width + (n_agents / n_cities)))
    max_steps = train_env._max_episode_steps

    action_count = [0] * action_size
    action_dict = dict()
    agent_obs = [None] * n_agents
    agent_prev_obs = [None] * n_agents
    agent_prev_action = [2] * n_agents
    update_values = [False] * n_agents

    # Smoothed values used as target for hyperparameter tuning
    smoothed_normalized_score = -1.0
    smoothed_eval_normalized_score = -1.0
    smoothed_completion = 0.0
    smoothed_eval_completion = 0.0

    # Double Dueling DQN policy
    policy = DDDQNPolicy(state_size, action_size, train_params)

    # Loads existing replay buffer
    if restore_replay_buffer:
        try:
            policy.load_replay_buffer(restore_replay_buffer)
            policy.test()
        except RuntimeError as e:
            print("\n🛑 Could't load replay buffer, were the experiences generated using the same tree depth?")
            print(e)
            exit(1)

    print("\n💾 Replay buffer status: {}/{} experiences".format(len(policy.memory.memory), train_params.buffer_size))

    hdd = psutil.disk_usage('/')
    if save_replay_buffer and (hdd.free / (2 ** 30)) < 500.0:
        print("⚠️  Careful! Saving replay buffers will quickly consume a lot of disk space. You have {:.2f}gb left.".format(hdd.free / (2 ** 30)))

    # TensorBoard writer
    writer = SummaryWriter()
    writer.add_hparams(vars(train_params), {})
    writer.add_hparams(vars(train_env_params), {})
    writer.add_hparams(vars(obs_params), {})

    training_timer = Timer()
    training_timer.start()

    print("\n🚉 Training {} trains on {}x{} grid for {} episodes, evaluating on {} episodes every {} episodes. Training id '{}'.\n".format(
        train_env.get_num_agents(),
        x_dim, y_dim,
        n_episodes,
        n_eval_episodes,
        checkpoint_interval,
        training_id
    ))

    for episode_idx in range(n_episodes + 1):
        step_timer = Timer()
        reset_timer = Timer()
        learn_timer = Timer()
        preproc_timer = Timer()
        inference_timer = Timer()

        # Reset environment
        reset_timer.start()
        obs, info = train_env.reset(regenerate_rail=True, regenerate_schedule=True)
        reset_timer.end()

        if train_params.render:
            env_renderer.set_new_rail()

        score = 0
        nb_steps = 0
        actions_taken = []

        # Build initial agent-specific observations
        for agent in train_env.get_agent_handles():
            if obs[agent]:
                agent_obs[agent] = normalize_observation(obs[agent], observation_tree_depth, observation_radius=observation_radius)
                agent_prev_obs[agent] = agent_obs[agent].copy()

        # Run episode
        for step in range(max_steps - 1):
            inference_timer.start()
            for agent in train_env.get_agent_handles():
                if info['action_required'][agent]:
                    update_values[agent] = True
                    action = policy.act(agent_obs[agent], eps=eps_start)

                    action_count[action] += 1
                    actions_taken.append(action)
                else:
                    # An action is not required if the train hasn't joined the railway network,
                    # if it already reached its target, or if is currently malfunctioning.
                    update_values[agent] = False
                    action = 0
                action_dict.update({agent: action})
            inference_timer.end()

            # Environment step
            step_timer.start()
            next_obs, all_rewards, done, info = train_env.step(action_dict)
            step_timer.end()

            # Render an episode at some interval
            if train_params.render and episode_idx % checkpoint_interval == 0:
                env_renderer.render_env(
                    show=True,
                    frames=False,
                    show_observations=False,
                    show_predictions=False
                )

            # Update replay buffer and train agent
            for agent in train_env.get_agent_handles():
                if update_values[agent] or done['__all__']:
                    # Only learn from timesteps where somethings happened
                    learn_timer.start()
                    policy.step(agent_prev_obs[agent], agent_prev_action[agent], all_rewards[agent], agent_obs[agent], done[agent])
                    learn_timer.end()

                    agent_prev_obs[agent] = agent_obs[agent].copy()
                    agent_prev_action[agent] = action_dict[agent]

                # Preprocess the new observations
                if next_obs[agent]:
                    preproc_timer.start()
                    agent_obs[agent] = normalize_observation(next_obs[agent], observation_tree_depth, observation_radius=observation_radius)
                    preproc_timer.end()

                score += all_rewards[agent]

            nb_steps = step

            if done['__all__']:
                break

        # Epsilon decay
        eps_start = max(eps_end, eps_decay * eps_start)

        # Collect information about training
        tasks_finished = sum(done[idx] for idx in train_env.get_agent_handles())
        completion = tasks_finished / max(1, train_env.get_num_agents())
        normalized_score = score / (max_steps * train_env.get_num_agents())
        action_probs = action_count / np.sum(action_count)
        action_count = [1] * action_size

        smoothing = 0.99
        smoothed_normalized_score = smoothed_normalized_score * smoothing + normalized_score * (1.0 - smoothing)
        smoothed_completion = smoothed_completion * smoothing + completion * (1.0 - smoothing)

        # Print logs
        if episode_idx % checkpoint_interval == 0:
            torch.save(policy.qnetwork_local, './checkpoints/' + training_id + '-' + str(episode_idx) + '.pth')

            if save_replay_buffer:
                policy.save_replay_buffer('./replay_buffers/' + training_id + '-' + str(episode_idx) + '.pkl')

            if train_params.render:
                env_renderer.close_window()

        print(
            '\r🚂 Episode {}'
            '\t 🏆 Score: {:.3f}'
            ' Avg: {:.3f}'
            '\t 💯 Done: {:.2f}%'
            ' Avg: {:.2f}%'
            '\t 🎲 Epsilon: {:.3f} '
            '\t 🔀 Action Probs: {}'.format(
                episode_idx,
                normalized_score,
                smoothed_normalized_score,
                100 * completion,
                100 * smoothed_completion,
                eps_start,
                format_action_prob(action_probs)
            ), end=" ")

        # Evaluate policy and log results at some interval
        if episode_idx % checkpoint_interval == 0 and n_eval_episodes > 0:
            scores, completions, nb_steps_eval = eval_policy(eval_env, policy, train_params, obs_params)

            writer.add_scalar("evaluation/scores_min", np.min(scores), episode_idx)
            writer.add_scalar("evaluation/scores_max", np.max(scores), episode_idx)
            writer.add_scalar("evaluation/scores_mean", np.mean(scores), episode_idx)
            writer.add_scalar("evaluation/scores_std", np.std(scores), episode_idx)
            writer.add_histogram("evaluation/scores", np.array(scores), episode_idx)
            writer.add_scalar("evaluation/completions_min", np.min(completions), episode_idx)
            writer.add_scalar("evaluation/completions_max", np.max(completions), episode_idx)
            writer.add_scalar("evaluation/completions_mean", np.mean(completions), episode_idx)
            writer.add_scalar("evaluation/completions_std", np.std(completions), episode_idx)
            writer.add_histogram("evaluation/completions", np.array(completions), episode_idx)
            writer.add_scalar("evaluation/nb_steps_min", np.min(nb_steps_eval), episode_idx)
            writer.add_scalar("evaluation/nb_steps_max", np.max(nb_steps_eval), episode_idx)
            writer.add_scalar("evaluation/nb_steps_mean", np.mean(nb_steps_eval), episode_idx)
            writer.add_scalar("evaluation/nb_steps_std", np.std(nb_steps_eval), episode_idx)
            writer.add_histogram("evaluation/nb_steps", np.array(nb_steps_eval), episode_idx)

            smoothing = 0.9
            smoothed_eval_normalized_score = smoothed_eval_normalized_score * smoothing + np.mean(scores) * (1.0 - smoothing)
            smoothed_eval_completion = smoothed_eval_completion * smoothing + np.mean(completions) * (1.0 - smoothing)
            writer.add_scalar("evaluation/smoothed_score", smoothed_eval_normalized_score, episode_idx)
            writer.add_scalar("evaluation/smoothed_completion", smoothed_eval_completion, episode_idx)

        # Save logs to tensorboard
        writer.add_scalar("training/score", normalized_score, episode_idx)
        writer.add_scalar("training/smoothed_score", smoothed_normalized_score, episode_idx)
        writer.add_scalar("training/completion", np.mean(completion), episode_idx)
        writer.add_scalar("training/smoothed_completion", np.mean(smoothed_completion), episode_idx)
        writer.add_scalar("training/nb_steps", nb_steps, episode_idx)
        writer.add_histogram("actions/distribution", np.array(actions_taken), episode_idx)
        writer.add_scalar("actions/nothing", action_probs[RailEnvActions.DO_NOTHING], episode_idx)
        writer.add_scalar("actions/left", action_probs[RailEnvActions.MOVE_LEFT], episode_idx)
        writer.add_scalar("actions/forward", action_probs[RailEnvActions.MOVE_FORWARD], episode_idx)
        writer.add_scalar("actions/right", action_probs[RailEnvActions.MOVE_RIGHT], episode_idx)
        writer.add_scalar("actions/stop", action_probs[RailEnvActions.STOP_MOVING], episode_idx)
        writer.add_scalar("training/epsilon", eps_start, episode_idx)
        writer.add_scalar("training/buffer_size", len(policy.memory), episode_idx)
        writer.add_scalar("training/loss", policy.loss, episode_idx)
        writer.add_scalar("timer/reset", reset_timer.get(), episode_idx)
        writer.add_scalar("timer/step", step_timer.get(), episode_idx)
        writer.add_scalar("timer/learn", learn_timer.get(), episode_idx)
        writer.add_scalar("timer/preproc", preproc_timer.get(), episode_idx)
        writer.add_scalar("timer/total", training_timer.get_current(), episode_idx)


def format_action_prob(action_probs):
    action_probs = np.round(action_probs, 3)
    actions = ["", "", "", "", ""]

    buffer = ""
    for action, action_prob in zip(actions, action_probs):
        buffer += action + " " + "{:.3f}".format(action_prob) + " "

    return buffer


def eval_policy(env, policy, train_params, obs_params):
    n_eval_episodes = train_params.n_evaluation_episodes
    max_steps = env._max_episode_steps
    tree_depth = obs_params.observation_tree_depth
    observation_radius = obs_params.observation_radius

    action_dict = dict()
    scores = []
    completions = []
    nb_steps = []

    for episode_idx in range(n_eval_episodes):
        agent_obs = [None] * env.get_num_agents()
        score = 0.0

        obs, info = env.reset(regenerate_rail=True, regenerate_schedule=True)

        final_step = 0

        for step in range(max_steps - 1):
            for agent in env.get_agent_handles():
                if obs[agent]:
                    agent_obs[agent] = normalize_observation(obs[agent], tree_depth=tree_depth, observation_radius=observation_radius)

                action = 0
                if info['action_required'][agent]:
                    action = policy.act(agent_obs[agent], eps=0.0)
                action_dict.update({agent: action})

            obs, all_rewards, done, info = env.step(action_dict)

            for agent in env.get_agent_handles():
                score += all_rewards[agent]

            final_step = step

            if done['__all__']:
                break

        normalized_score = score / (max_steps * env.get_num_agents())
        scores.append(normalized_score)

        tasks_finished = sum(done[idx] for idx in env.get_agent_handles())
        completion = tasks_finished / max(1, env.get_num_agents())
        completions.append(completion)

        nb_steps.append(final_step)

    print("\t✅ Eval: score {:.3f} done {:.1f}%".format(np.mean(scores), np.mean(completions) * 100.0))

    return scores, completions, nb_steps


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("-n", "--n_episodes", help="number of episodes to run", default=2500, type=int)
    parser.add_argument("-t", "--training_env_config", help="training config id (eg 0 for Test_0)", default=0, type=int)
    parser.add_argument("-e", "--evaluation_env_config", help="evaluation config id (eg 0 for Test_0)", default=0, type=int)
    parser.add_argument("--n_evaluation_episodes", help="number of evaluation episodes", default=25, type=int)
    parser.add_argument("--checkpoint_interval", help="checkpoint interval", default=100, type=int)
    parser.add_argument("--eps_start", help="max exploration", default=1.0, type=float)
    parser.add_argument("--eps_end", help="min exploration", default=0.01, type=float)
    parser.add_argument("--eps_decay", help="exploration decay", default=0.99, type=float)
    parser.add_argument("--buffer_size", help="replay buffer size", default=int(1e5), type=int)
    parser.add_argument("--buffer_min_size", help="min buffer size to start training", default=0, type=int)
    parser.add_argument("--restore_replay_buffer", help="replay buffer to restore", default="", type=str)
    parser.add_argument("--save_replay_buffer", help="save replay buffer at each evaluation interval", default=False, type=bool)
    parser.add_argument("--batch_size", help="minibatch size", default=128, type=int)
    parser.add_argument("--gamma", help="discount factor", default=0.99, type=float)
    parser.add_argument("--tau", help="soft update of target parameters", default=1e-3, type=float)
    parser.add_argument("--learning_rate", help="learning rate", default=0.5e-4, type=float)
    parser.add_argument("--hidden_size", help="hidden size (2 fc layers)", default=128, type=int)
    parser.add_argument("--update_every", help="how often to update the network", default=8, type=int)
    parser.add_argument("--use_gpu", help="use GPU if available", default=False, type=bool)
    parser.add_argument("--num_threads", help="number of threads PyTorch can use", default=1, type=int)
    parser.add_argument("--render", help="render 1 episode in 100", default=False, type=bool)
    training_params = parser.parse_args()

    env_params = [
        {
            # Test_0
            "n_agents": 5,
            "x_dim": 25,
            "y_dim": 25,
            "n_cities": 2,
            "max_rails_between_cities": 2,
            "max_rails_in_city": 3,
            "malfunction_rate": 1 / 50,
            "seed": 0
        },
        {
            # Test_1
            "n_agents": 10,
            "x_dim": 30,
            "y_dim": 30,
            "n_cities": 2,
            "max_rails_between_cities": 2,
            "max_rails_in_city": 3,
            "malfunction_rate": 1 / 100,
            "seed": 0
        },
        {
            # Test_2
            "n_agents": 20,
            "x_dim": 30,
            "y_dim": 30,
            "n_cities": 3,
            "max_rails_between_cities": 2,
            "max_rails_in_city": 3,
            "malfunction_rate": 1 / 200,
            "seed": 0
        },
    ]

    obs_params = {
        "observation_tree_depth": 2,
        "observation_radius": 10,
        "observation_max_path_depth": 30
    }

    def check_env_config(id):
        if id >= len(env_params) or id < 0:
            print("\n🛑 Invalid environment configuration, only Test_0 to Test_{} are supported.".format(len(env_params) - 1))
            exit(1)


    check_env_config(training_params.training_env_config)
    check_env_config(training_params.evaluation_env_config)

    training_env_params = env_params[training_params.training_env_config]
    evaluation_env_params = env_params[training_params.evaluation_env_config]

    print("\nTraining parameters:")
    pprint(vars(training_params))
    print("\nTraining environment parameters (Test_{}):".format(training_params.training_env_config))
    pprint(training_env_params)
    print("\nEvaluation environment parameters (Test_{}):".format(training_params.evaluation_env_config))
    pprint(evaluation_env_params)
    print("\nObservation parameters:")
    pprint(obs_params)

    os.environ["OMP_NUM_THREADS"] = str(training_params.num_threads)
    train_agent(training_params, Namespace(**training_env_params), Namespace(**evaluation_env_params), Namespace(**obs_params))