Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • Archana_Badagi/food-round2
  • eric_a_scuccimarra/food-round2
  • joel_joseph/food-round2
  • darthgera123/food-round2
  • reshmarameshbabu/food-round2
  • nikhil_rayaprolu/food-round2
6 results
Show changes
Commits on Source (10)
*.pth filter=lfs diff=lfs merge=lfs -text
model_final.pth filter=lfs diff=lfs merge=lfs -text
......@@ -116,5 +116,3 @@ data
*.log.json
work_dirs/
# Pytorch
*.pth
......@@ -14,6 +14,45 @@ This is an evolving dataset, where we will release more data as the dataset grow
MMdetection is an open source object detection toolbox based on PyTorch, with a large Model Zoo with many customised models that can be plugged and tested in with just a single config file modification. PYou can read more about it at: [mmdetection github](https://github.com/open-mmlab/mmdetection/)
Follow the installation instructions as given in the above link.
# Installation
Ensure you have `docker` and `nvidia-docker` installed by following the instructions here :
* [Docker](https://docs.docker.com/install/)
* [nvidia-docker](https://github.com/NVIDIA/nvidia-docker)
**NOTE** : You do not need nvidia-docker if you do not want to use GPU when testing your submission locally
[MMDetection Installation instructions](https://github.com/open-mmlab/mmdetection/blob/master/docs/INSTALL.md)
# Dataset
The dataset for the [AIcrowd Food Recognition Challenge](https://www.aicrowd.com/challenges/food-recognition-challenge) is available at [https://www.aicrowd.com/challenges/food-recognition-challenge/dataset_files](https://www.aicrowd.com/challenges/food-recognition-challenge/dataset_files)
This dataset contains :
* `train-v0.2.tar.gz` : This is the Training Set of **7949** (as RGB images) food images, along with their corresponding annotations in [MS-COCO format](http://cocodataset.org/#home)
* `val-v0.2.tar.gz`: This is the suggested Validation Set of **418** (as RGB images) food images, along with their corresponding annotations in [MS-COCO format](http://cocodataset.org/#home)
* `test_images-v0.2.tar.gz` : This is the debug Test Set for Round-1, where you are provided the same images as the validation set.
To get started, we would advise you to download all the files, and untar them inside the `data/` folder of this repository, so that you have a directory structure like this :
```bash
|-- data/
| |-- test_images/ (has all images for prediction)(**NOTE** : They are the same as the validation set images)
| |-- train/
| | |-- images (has all the images for training)
| | |__ annotation.json : Annotation of the data in MS COCO format
| | |__ annotation-small.json : Smaller version of the previous dataset
| |-- val/
| | |-- images (has all the images for training)
| | |__ annotation.json : Annotation of the data in MS COCO format
| | |__ annotation-small.json : Smaller version of the previous dataset
```
We are also assuming that you have already installed all the requirements for this notebook, or you can still install them by :
# Usage
# Training with MMDetection:
Let us look at training MMDetection using Hybrid Task Cascade [HTC research paper](https://arxiv.org/abs/1901.07518).
......@@ -70,52 +109,7 @@ plot_curve([os.getcwd()+'/work_dirs/htc_r50_fpn/20191206_105437.log.json'], args
```
# Installation
Ensure you have `docker` and `nvidia-docker` installed by following the instructions here :
* [Docker](https://docs.docker.com/install/)
* [nvidia-docker](https://github.com/NVIDIA/nvidia-docker)
**NOTE** : You do not need nvidia-docker if you do not want to use GPU when testing your submission locally
```
git clone http://gitlab.aicrowd.com/nikhil_rayaprolu/food-round2.git
cd food-round2
pip3 install -r requirements.txt
pip3 install git+https://github.com/AIcrowd/coco.git
```
# Dataset
The dataset for the [AIcrowd Food Recognition Challenge](https://www.aicrowd.com/challenges/food-recognition-challenge) is available at [https://www.aicrowd.com/challenges/food-recognition-challenge/dataset_files](https://www.aicrowd.com/challenges/food-recognition-challenge/dataset_files)
This dataset contains :
* `train-v0.2.tar.gz` : This is the Training Set of **7949** (as RGB images) food images, along with their corresponding annotations in [MS-COCO format](http://cocodataset.org/#home)
* `val-v0.2.tar.gz`: This is the suggested Validation Set of **418** (as RGB images) food images, along with their corresponding annotations in [MS-COCO format](http://cocodataset.org/#home)
* `test_images-v0.2.tar.gz` : This is the debug Test Set for Round-1, where you are provided the same images as the validation set.
To get started, we would advise you to download all the files, and untar them inside the `data/` folder of this repository, so that you have a directory structure like this :
```bash
|-- data/
| |-- test_images/ (has all images for prediction)(**NOTE** : They are the same as the validation set images)
| |-- train/
| | |-- images (has all the images for training)
| | |__ annotation.json : Annotation of the data in MS COCO format
| | |__ annotation-small.json : Smaller version of the previous dataset
| |-- val/
| | |-- images (has all the images for training)
| | |__ annotation.json : Annotation of the data in MS COCO format
| | |__ annotation-small.json : Smaller version of the previous dataset
```
We are also assuming that you have already installed all the requirements for this notebook, or you can still install them by :
# Usage
**TODO** : @Nikhil : Please add some Usage instructions for people to use this codebase locally.
## Other Associated Notebooks
......@@ -219,6 +213,59 @@ You now should be able to see the details of your submission at :
[gitlab.aicrowd.com/<YOUR_AICROWD_USER_NAME>/food-challenge-pytorch-baseline/issues](gitlab.aicrowd.com/<YOUR_AICROWD_USER_NAME>/food-challenge-pytorch-baseline/issues)
## Using http instead of ssh (Personal Access Token):
In order to use http to clone repositories and submit on gitlab:
a) Create a personal access token
1. Log in to GitLab.
2. In the upper-right corner, click your avatar and select Settings.
3. On the User Settings menu, select Access Tokens.
4. Choose a name and optional expiry date for the token.
5. Choose the desired scopes.
6. Click the Create personal access token button.
7. Save the personal access token somewhere safe, lets call it XXX for now.
Once you leave or refresh the page, you won’t be able to access it again.
b) to clone a repo use the following command:
git clone [https://oauth2:XXX@gitlab.aicrowd.com/(username)/(repo_name).git](https://oauth2:XXX@gitlab.aicrowd.com/(username)/(repo_name).git)
c)submit a solution:
```
cd into your submission repo on gitlab
cd (repo_name)
#Add AICrowd git remote endpoint
git remote add aicrowd https://oauth2:XXX@gitlab.aicrowd.com/(username)/(repo_name).git
git push aicrowd master
# Create a tag for your submission and push
git tag -am "submission-v0.1" submission-v0.1
git push aicrowd master
git push aicrowd submission-v0.1
# Note : If the contents of your repository (latest commit hash) does not change,
# then pushing a new tag will not trigger a new evaluation.
```
**Best of Luck**
## Miscelaneous Resources
......@@ -226,7 +273,7 @@ You now should be able to see the details of your submission at :
## Credits
* Parts of the documentation for this baseline was taken from : https://github.com/AIcrowd/food-recognition-challenge-starter-kit
* **TODO** @Nikhil : Please add relevant credits for the mmdetection codebases that you used as a reference.
* and the baseline is built using MMDetection: https://github.com/open-mmlab/mmdetection/
# Author
**[Nikhil Rayaprolu](nikhil@aicrowd.com)**
......
import argparse
import os
import os.path as osp
import pickle
import shutil
import tempfile
import mmcv
import torch
import torch.distributed as dist
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
from mmdet.core import coco_eval, results2json, wrap_fp16_model
from mmdet.datasets import build_dataloader, build_dataset
from mmdet.models import build_detector
import glob
import json
test_images_path = os.getenv("AICROWD_TEST_IMAGES_PATH", False)
predictions_output_path = os.getenv("AICROWD_PREDICTIONS_OUTPUT_PATH", False)
annotations = {'categories': [], 'info': {}, 'images': []}
for item in glob.glob(test_images_path+'/*.jpg'):
image_dict = dict()
img = mmcv.imread(item)
height,width,__ = img.shape
id = int(os.path.basename(item).split('.')[0])
image_dict['id'] = id
image_dict['file_name'] = os.path.basename(item)
image_dict['width'] = width
image_dict['height'] = height
annotations['images'].append(image_dict)
annotations['categories'] = [
[
{
"id": 2578,
"name": "water",
......@@ -404,211 +366,3 @@ annotations['categories'] = [
"supercategory": "food"
}
]
json.dump(annotations, open('test.json', 'w'))
def single_gpu_test(model, data_loader, show=False):
model.eval()
results = []
dataset = data_loader.dataset
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, rescale=not show, **data)
results.append(result)
if show:
model.module.show_result(data, result)
batch_size = data['img'][0].size(0)
for _ in range(batch_size):
prog_bar.update()
return results
def multi_gpu_test(model, data_loader, tmpdir=None):
model.eval()
results = []
dataset = data_loader.dataset
rank, world_size = get_dist_info()
if rank == 0:
prog_bar = mmcv.ProgressBar(len(dataset))
for i, data in enumerate(data_loader):
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
results.append(result)
if rank == 0:
batch_size = data['img'][0].size(0)
for _ in range(batch_size * world_size):
prog_bar.update()
# collect results from all ranks
results = collect_results(results, len(dataset), tmpdir)
return results
def collect_results(result_part, size, tmpdir=None):
rank, world_size = get_dist_info()
# create a tmp dir if it is not specified
if tmpdir is None:
MAX_LEN = 512
# 32 is whitespace
dir_tensor = torch.full((MAX_LEN, ),
32,
dtype=torch.uint8,
device='cuda')
if rank == 0:
tmpdir = tempfile.mkdtemp()
tmpdir = torch.tensor(
bytearray(tmpdir.encode()), dtype=torch.uint8, device='cuda')
dir_tensor[:len(tmpdir)] = tmpdir
dist.broadcast(dir_tensor, 0)
tmpdir = dir_tensor.cpu().numpy().tobytes().decode().rstrip()
else:
mmcv.mkdir_or_exist(tmpdir)
# dump the part result to the dir
mmcv.dump(result_part, osp.join(tmpdir, 'part_{}.pkl'.format(rank)))
dist.barrier()
# collect all parts
if rank != 0:
return None
else:
# load results of all parts from tmp dir
part_list = []
for i in range(world_size):
part_file = osp.join(tmpdir, 'part_{}.pkl'.format(i))
part_list.append(mmcv.load(part_file))
# sort the results
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
# the dataloader may pad some samples
ordered_results = ordered_results[:size]
# remove tmp dir
shutil.rmtree(tmpdir)
return ordered_results
def parse_args():
parser = argparse.ArgumentParser(description='MMDet test detector')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('--out', help='output result file')
parser.add_argument(
'--json_out',
help='output result file name without extension',
type=str)
parser.add_argument(
'--eval',
type=str,
nargs='+',
choices=['proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'],
help='eval types')
parser.add_argument('--show', action='store_true', help='show results')
parser.add_argument('--tmpdir', help='tmp dir for writing some results')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
assert args.out or args.show or args.json_out, \
('Please specify at least one operation (save or show the results) '
'with the argument "--out" or "--show" or "--json_out"')
if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
raise ValueError('The output file must be a pkl file.')
if args.json_out is not None and args.json_out.endswith('.json'):
args.json_out = args.json_out[:-5]
cfg = mmcv.Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
cfg.data.test.test_mode = True
cfg.data.test.ann_file = 'test.json'
cfg.data.test.img_prefix = test_images_path
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# build the dataloader
# TODO: support multiple images per gpu (only minor changes are needed)
dataset = build_dataset(cfg.data.test)
data_loader = build_dataloader(
dataset,
imgs_per_gpu=1,
workers_per_gpu=cfg.data.workers_per_gpu,
dist=distributed,
shuffle=False)
# build the model and load checkpoint
model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
# old versions did not save class info in checkpoints, this walkaround is
# for backward compatibility
model.CLASSES = [category['name'] for category in annotations['categories']]
if not distributed:
model = MMDataParallel(model, device_ids=[0])
outputs = single_gpu_test(model, data_loader, args.show)
else:
model = MMDistributedDataParallel(model.cuda())
outputs = multi_gpu_test(model, data_loader, args.tmpdir)
rank, _ = get_dist_info()
if args.out and rank == 0:
print('\nwriting results to {}'.format(args.out))
mmcv.dump(outputs, args.out)
eval_types = args.eval
if eval_types:
print('Starting evaluate {}'.format(' and '.join(eval_types)))
if eval_types == ['proposal_fast']:
result_file = args.out
coco_eval(result_file, eval_types, dataset.coco)
else:
if not isinstance(outputs[0], dict):
result_files = results2json(dataset, outputs, args.out)
coco_eval(result_files, eval_types, dataset.coco)
else:
for name in outputs[0]:
print('\nEvaluating {}'.format(name))
outputs_ = [out[name] for out in outputs]
result_file = args.out + '.{}'.format(name)
result_files = results2json(dataset, outputs_,
result_file)
coco_eval(result_files, eval_types, dataset.coco)
print(args.json_out, rank)
if outputs and args.json_out and rank == 0:
print(outputs)
if not isinstance(outputs[0], dict):
response = results2json(dataset, outputs, args.json_out)
else:
for name in outputs[0]:
outputs_ = [out[name] for out in outputs]
result_file = args.json_out + '.{}'.format(name)
response = results2json(dataset, outputs_, result_file)
print(response, response['segm'], args.json_out)
shutil.move(response['segm'], predictions_output_path)
if __name__ == '__main__':
main()
#!/bin/bash
docker build -t $IMAGE_NAME
\ No newline at end of file
......@@ -181,7 +181,7 @@ test_cfg = dict(
keep_all_stages=False)
# dataset settings
dataset_type = 'CocoDataset'
data_root = '/ssd_scratch/cvit/nikhil/food-version2/data/'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
albu_train_transforms = [
......@@ -312,6 +312,6 @@ total_epochs = 30
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/htc_r50_fpn'
load_from = '/ssd_scratch/cvit/nikhil/food-version2/htc_r50_fpn_20e_20190408-c03b7015.pth'
load_from = 'htc_r50_fpn_20e_20190408-c03b7015.pth'
resume_from = None
workflow = [('train', 1)]
nvidia-docker run -it \
--net=host \
-v ${TEST_IMAGES_PATH}:/test_images \
-v /tmp:/tmp_host \
-e AICROWD_IS_GRADING=True \
-e AICROWD_TEST_IMAGES_PATH="/test_images" \
-e AICROWD_PREDICTIONS_OUTPUT_PATH="/tmp/output.json" \
$IMAGE_NAME \
/home/aicrowd/run.sh
File added
#!/bin/bash
python tools/test.py configs/htc_r50.py epoch_20.pth --json_out $AICROWD_PREDICTIONS_OUTPUT_PATH
python tools/infer.py configs/htc_r50.py epoch_20.pth --json_out $AICROWD_PREDICTIONS_OUTPUT_PATH
......@@ -22,7 +22,7 @@ print(predictions_output_path)
annotations = {'categories': [], 'info': {}, 'images': []}
for item in glob.glob(test_images_path+'/*.jpg'):
image_dict = dict()
img = mmcv.imread(item)
height,width,__ = img.shape
id = int(os.path.basename(item).split('.')[0])
......@@ -31,375 +31,8 @@ for item in glob.glob(test_images_path+'/*.jpg'):
image_dict['width'] = width
image_dict['height'] = height
annotations['images'].append(image_dict)
annotations['categories'] = [
{
"id": 2578,
"name": "water",
"name_readable": "Water",
"supercategory": "food"
},
{
"id": 2939,
"name": "pizza-margherita-baked",
"name_readable": "Pizza, Margherita, baked",
"supercategory": "food"
},
{
"id": 1085,
"name": "broccoli",
"name_readable": "Broccoli",
"supercategory": "food"
},
{
"id": 1040,
"name": "salad-leaf-salad-green",
"name_readable": "Salad, leaf / salad, green",
"supercategory": "food"
},
{
"id": 1070,
"name": "zucchini",
"name_readable": "Zucchini",
"supercategory": "food"
},
{
"id": 2022,
"name": "egg",
"name_readable": "Egg",
"supercategory": "food"
},
{
"id": 2053,
"name": "butter",
"name_readable": "Butter",
"supercategory": "food"
},
{
"id": 1566,
"name": "bread-white",
"name_readable": "Bread, white",
"supercategory": "food"
},
{
"id": 1151,
"name": "apple",
"name_readable": "Apple",
"supercategory": "food"
},
{
"id": 2131,
"name": "dark-chocolate",
"name_readable": "Dark chocolate",
"supercategory": "food"
},
{
"id": 2521,
"name": "white-coffee-with-caffeine",
"name_readable": "White coffee, with caffeine",
"supercategory": "food"
},
{
"id": 1068,
"name": "sweet-pepper",
"name_readable": "Sweet pepper",
"supercategory": "food"
},
{
"id": 1026,
"name": "mixed-salad-chopped-without-sauce",
"name_readable": "Mixed salad (chopped without sauce)",
"supercategory": "food"
},
{
"id": 2738,
"name": "tomato-sauce",
"name_readable": "Tomato sauce",
"supercategory": "food"
},
{
"id": 1565,
"name": "bread-wholemeal",
"name_readable": "Bread, wholemeal",
"supercategory": "food"
},
{
"id": 2512,
"name": "coffee-with-caffeine",
"name_readable": "Coffee, with caffeine",
"supercategory": "food"
},
{
"id": 1061,
"name": "cucumber",
"name_readable": "Cucumber",
"supercategory": "food"
},
{
"id": 1311,
"name": "cheese",
"name_readable": "Cheese",
"supercategory": "food"
},
{
"id": 1505,
"name": "pasta-spaghetti",
"name_readable": "Pasta, spaghetti",
"supercategory": "food"
},
{
"id": 1468,
"name": "rice",
"name_readable": "Rice",
"supercategory": "food"
},
{
"id": 1967,
"name": "salmon",
"name_readable": "Salmon",
"supercategory": "food"
},
{
"id": 1078,
"name": "carrot",
"name_readable": "Carrot",
"supercategory": "food"
},
{
"id": 1116,
"name": "onion",
"name_readable": "Onion",
"supercategory": "food"
},
{
"id": 1022,
"name": "mixed-vegetables",
"name_readable": "Mixed vegetables",
"supercategory": "food"
},
{
"id": 2504,
"name": "espresso-with-caffeine",
"name_readable": "Espresso, with caffeine",
"supercategory": "food"
},
{
"id": 1154,
"name": "banana",
"name_readable": "Banana",
"supercategory": "food"
},
{
"id": 1163,
"name": "strawberries",
"name_readable": "Strawberries",
"supercategory": "food"
},
{
"id": 2750,
"name": "mayonnaise",
"name_readable": "Mayonnaise",
"supercategory": "food"
},
{
"id": 1210,
"name": "almonds",
"name_readable": "Almonds",
"supercategory": "food"
},
{
"id": 2620,
"name": "wine-white",
"name_readable": "Wine, white",
"supercategory": "food"
},
{
"id": 1310,
"name": "hard-cheese",
"name_readable": "Hard cheese",
"supercategory": "food"
},
{
"id": 1893,
"name": "ham-raw",
"name_readable": "Ham, raw",
"supercategory": "food"
},
{
"id": 1069,
"name": "tomato",
"name_readable": "Tomato",
"supercategory": "food"
},
{
"id": 1058,
"name": "french-beans",
"name_readable": "French beans",
"supercategory": "food"
},
{
"id": 1180,
"name": "mandarine",
"name_readable": "Mandarine",
"supercategory": "food"
},
{
"id": 2618,
"name": "wine-red",
"name_readable": "Wine, red",
"supercategory": "food"
},
{
"id": 1010,
"name": "potatoes-steamed",
"name_readable": "Potatoes steamed",
"supercategory": "food"
},
{
"id": 1588,
"name": "croissant",
"name_readable": "Croissant",
"supercategory": "food"
},
{
"id": 1879,
"name": "salami",
"name_readable": "Salami",
"supercategory": "food"
},
{
"id": 3080,
"name": "boisson-au-glucose-50g",
"name_readable": "Boisson au glucose 50g",
"supercategory": "food"
},
{
"id": 2388,
"name": "biscuits",
"name_readable": "Biscuits",
"supercategory": "food"
},
{
"id": 1108,
"name": "corn",
"name_readable": "Corn",
"supercategory": "food"
},
{
"id": 1032,
"name": "leaf-spinach",
"name_readable": "Leaf spinach",
"supercategory": "food"
},
{
"id": 2099,
"name": "jam",
"name_readable": "Jam",
"supercategory": "food"
},
{
"id": 2530,
"name": "tea-green",
"name_readable": "Tea, green",
"supercategory": "food"
},
{
"id": 1013,
"name": "chips-french-fries",
"name_readable": "Chips, french fries",
"supercategory": "food"
},
{
"id": 1323,
"name": "parmesan",
"name_readable": "Parmesan",
"supercategory": "food"
},
{
"id": 2634,
"name": "beer",
"name_readable": "Beer",
"supercategory": "food"
},
{
"id": 1056,
"name": "avocado",
"name_readable": "Avocado",
"supercategory": "food"
},
{
"id": 1520,
"name": "bread-french-white-flour",
"name_readable": "Bread, French (white flour)",
"supercategory": "food"
},
{
"id": 1788,
"name": "chicken",
"name_readable": "Chicken",
"supercategory": "food"
},
{
"id": 1352,
"name": "soft-cheese",
"name_readable": "Soft cheese",
"supercategory": "food"
},
{
"id": 2498,
"name": "tea",
"name_readable": "Tea",
"supercategory": "food"
},
{
"id": 2711,
"name": "sauce-savoury",
"name_readable": "Sauce (savoury)",
"supercategory": "food"
},
{
"id": 2103,
"name": "honey",
"name_readable": "Honey",
"supercategory": "food"
},
{
"id": 1554,
"name": "bread-whole-wheat",
"name_readable": "Bread, whole wheat",
"supercategory": "food"
},
{
"id": 1556,
"name": "bread-sourdough",
"name_readable": "Bread, sourdough",
"supercategory": "food"
},
{
"id": 1307,
"name": "gruyere",
"name_readable": "Gruyère",
"supercategory": "food"
},
{
"id": 1060,
"name": "pickle",
"name_readable": "Pickle",
"supercategory": "food"
},
{
"id": 1220,
"name": "mixed-nuts",
"name_readable": "Mixed nuts",
"supercategory": "food"
},
{
"id": 2580,
"name": "water-mineral",
"name_readable": "Water, mineral",
"supercategory": "food"
}
]
json.dump(annotations, open('test.json', 'w'))
annotations['categories'] = json.loads(open("all_categories.json").read())
json.dump(annotations, open('test_annotations.json', 'w'))
def single_gpu_test(model, data_loader, show=False):
......@@ -591,7 +224,7 @@ def main():
torch.backends.cudnn.benchmark = True
cfg.model.pretrained = None
cfg.data.test.test_mode = True
cfg.data.test.ann_file = 'test.json'
cfg.data.test.ann_file = 'test_annotations.json'
cfg.data.test.img_prefix = test_images_path
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
......