Skip to content
Snippets Groups Projects
Commit da19bd4f authored by Kai Chen's avatar Kai Chen
Browse files

update fast rcnn results

parent 3a5ac395
No related branches found
No related tags found
No related merge requests found
......@@ -60,16 +60,16 @@ We released RPN, Faster R-CNN and Mask R-CNN models in the first version. More m
| R-50-FPN | pytorch | 1x | 5.8 | 0.690 | 7.7 | 37.3 | 34.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/mask_rcnn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN | pytorch | 2x | 5.8 | 0.690 | 7.7 | 38.6 | 35.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/mask_rcnn_r50_fpn_2x_20181010_results.pkl.json) |
### Fast R-CNN (with pre-computed proposals) (coming soon)
### Fast R-CNN (with pre-computed proposals)
| Backbone | Style | Type | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe | Faster | 1x | | | | | | |
| R-50-FPN | pytorch | Faster | 1x | | | | | | |
| R-50-FPN | pytorch | Faster | 2x | | | | | | |
| R-50-FPN | caffe | Mask | 1x | | | | | | |
| R-50-FPN | pytorch | Mask | 1x | | | | | | |
| R-50-FPN | pytorch | Mask | 2x | | | | | | |
| R-50-FPN | caffe | Faster | 1x | 3.5 | 0.35 | 14.6 | 36.6 | - | - |
| R-50-FPN | pytorch | Faster | 1x | 4.0 | 0.38 | 14.5 | 35.8 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_1x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_rcnn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN | pytorch | Faster | 2x | 4.0 | 0.38 | 14.5 | 37.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_2x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_rcnn_r50_fpn_2x_20181010_results.pkl.json) |
| R-50-FPN | caffe | Mask | 1x | 5.4 | 0.47 | 10.7 | 37.3 | 34.5 | - |
| R-50-FPN | pytorch | Mask | 1x | 5.3 | 0.50 | 10.6 | 36.8 | 34.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_1x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_mask_rcnn_r50_fpn_1x_20181010_results.pkl.json) |
| R-50-FPN | pytorch | Mask | 2x | 5.3 | 0.50 | 10.6 | 37.9 | 34.8 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010.pth) \| [result](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/results/fast_mask_rcnn_r50_fpn_2x_20181010_results.pkl.json) |
### RetinaNet (coming soon)
......@@ -95,8 +95,9 @@ In general, mmdetection has 3 advantages over Detectron.
### Performance
Detectron and Detectron.pytorch use caffe-style ResNet as the backbone.
To simply utilize the PyTorch model zoo, we use pytorch-style ResNet in our experiments.
In order to utilize the PyTorch model zoo, we use pytorch-style ResNet in our experiments.
In the meanwhile, we train models with caffe-style ResNet in 1x experiments for comparison.
We find that pytorch-style ResNet usually converges slower than caffe-style ResNet,
thus leading to slightly lower results in 1x schedule, but the final results
of 2x schedule is higher.
......@@ -153,6 +154,32 @@ indicated as *pytorch-style results* / *caffe-style results*.
<td>-</td>
<td>38.6 &amp; 35.1 / -</td>
</tr>
<tr>
<td rowspan="2">Fast R-CNN</td>
<td>1x</td>
<td>36.4</td>
<td>-</td>
<td>35.8 / 36.6</td>
</tr>
<tr>
<td>2x</td>
<td>36.8</td>
<td>-</td>
<td>37.1 / -</td>
</tr>
<tr>
<td rowspan="2">Fast R-CNN (w/mask)</td>
<td>1x</td>
<td>37.3 &amp; 33.7</td>
<td>-</td>
<td>36.8 &amp; 34.1 / 37.3 &amp; 34.5</td>
</tr>
<tr>
<td>2x</td>
<td>37.7 &amp; 34.0</td>
<td>-</td>
<td>37.9 &amp; 34.8 / -</td>
</tr>
</table>
### Training Speed
......@@ -184,6 +211,18 @@ The training speed is measure with s/iter. The lower, the better.
<td>1.435</td>
<td>0.690 / 0.732</td>
</tr>
<tr>
<td>Fast R-CNN</td>
<td>0.285</td>
<td>-</td>
<td>0.375 / 0.398</td>
</tr>
<tr>
<td>Fast R-CNN (w/mask)</td>
<td>0.377</td>
<td>-</td>
<td>0.504 / 0.574</td>
</tr>
</table>
\*1. Detectron reports the speed on Facebook's Big Basin servers (P100),
......@@ -226,6 +265,18 @@ The inference speed is measured with fps (img/s) on a single GPU. The higher, th
<td></td>
<td>7.7 / 7.4</td>
</tr>
<tr>
<td>Fast R-CNN</td>
<td>12.5</td>
<td></td>
<td>14.5 / 14.1</td>
</tr>
<tr>
<td>Fast R-CNN (w/mask)</td>
<td>9.9</td>
<td></td>
<td>10.6 / 10.3</td>
</tr>
</table>
### Training memory
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment