Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
food-round2
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Joel Joseph
food-round2
Commits
d568f7bf
"README.md" did not exist on "ac43ecbc7ee9d505c076f74e185a21e6b72f7136"
Commit
d568f7bf
authored
6 years ago
by
Kai Chen
Browse files
Options
Downloads
Patches
Plain Diff
add voc training configs and eval script
parent
60d5bc54
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
+157
-0
157 additions, 0 deletions
configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
tools/voc_eval.py
+62
-0
62 additions, 0 deletions
tools/voc_eval.py
with
219 additions
and
0 deletions
configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py
0 → 100644
+
157
−
0
View file @
d568f7bf
# model settings
model
=
dict
(
type
=
'
FasterRCNN
'
,
pretrained
=
'
modelzoo://resnet50
'
,
backbone
=
dict
(
type
=
'
ResNet
'
,
depth
=
50
,
num_stages
=
4
,
out_indices
=
(
0
,
1
,
2
,
3
),
frozen_stages
=
1
,
style
=
'
pytorch
'
),
neck
=
dict
(
type
=
'
FPN
'
,
in_channels
=
[
256
,
512
,
1024
,
2048
],
out_channels
=
256
,
num_outs
=
5
),
rpn_head
=
dict
(
type
=
'
RPNHead
'
,
in_channels
=
256
,
feat_channels
=
256
,
anchor_scales
=
[
8
],
anchor_ratios
=
[
0.5
,
1.0
,
2.0
],
anchor_strides
=
[
4
,
8
,
16
,
32
,
64
],
target_means
=
[.
0
,
.
0
,
.
0
,
.
0
],
target_stds
=
[
1.0
,
1.0
,
1.0
,
1.0
],
use_sigmoid_cls
=
True
),
bbox_roi_extractor
=
dict
(
type
=
'
SingleRoIExtractor
'
,
roi_layer
=
dict
(
type
=
'
RoIAlign
'
,
out_size
=
7
,
sample_num
=
2
),
out_channels
=
256
,
featmap_strides
=
[
4
,
8
,
16
,
32
]),
bbox_head
=
dict
(
type
=
'
SharedFCBBoxHead
'
,
num_fcs
=
2
,
in_channels
=
256
,
fc_out_channels
=
1024
,
roi_feat_size
=
7
,
num_classes
=
21
,
target_means
=
[
0.
,
0.
,
0.
,
0.
],
target_stds
=
[
0.1
,
0.1
,
0.2
,
0.2
],
reg_class_agnostic
=
False
))
# model training and testing settings
train_cfg
=
dict
(
rpn
=
dict
(
assigner
=
dict
(
type
=
'
MaxIoUAssigner
'
,
pos_iou_thr
=
0.7
,
neg_iou_thr
=
0.3
,
min_pos_iou
=
0.3
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'
RandomSampler
'
,
num
=
256
,
pos_fraction
=
0.5
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
False
),
allowed_border
=
0
,
pos_weight
=-
1
,
smoothl1_beta
=
1
/
9.0
,
debug
=
False
),
rcnn
=
dict
(
assigner
=
dict
(
type
=
'
MaxIoUAssigner
'
,
pos_iou_thr
=
0.5
,
neg_iou_thr
=
0.5
,
min_pos_iou
=
0.5
,
ignore_iof_thr
=-
1
),
sampler
=
dict
(
type
=
'
RandomSampler
'
,
num
=
512
,
pos_fraction
=
0.25
,
neg_pos_ub
=-
1
,
add_gt_as_proposals
=
True
),
pos_weight
=-
1
,
debug
=
False
))
test_cfg
=
dict
(
rpn
=
dict
(
nms_across_levels
=
False
,
nms_pre
=
2000
,
nms_post
=
2000
,
max_num
=
2000
,
nms_thr
=
0.7
,
min_bbox_size
=
0
),
rcnn
=
dict
(
score_thr
=
0.05
,
nms
=
dict
(
type
=
'
nms
'
,
iou_thr
=
0.5
),
max_per_img
=
100
)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
# dataset settings
dataset_type
=
'
VOCDataset
'
data_root
=
'
data/VOCdevkit/
'
img_norm_cfg
=
dict
(
mean
=
[
123.675
,
116.28
,
103.53
],
std
=
[
58.395
,
57.12
,
57.375
],
to_rgb
=
True
)
data
=
dict
(
imgs_per_gpu
=
2
,
workers_per_gpu
=
2
,
train
=
dict
(
type
=
'
RepeatDataset
'
,
# to avoid reloading datasets frequently
times
=
3
,
dataset
=
dict
(
type
=
dataset_type
,
ann_file
=
[
data_root
+
'
VOC2007/ImageSets/Main/trainval.txt
'
,
data_root
+
'
VOC2012/ImageSets/Main/trainval.txt
'
],
img_prefix
=
[
data_root
+
'
VOC2007/
'
,
data_root
+
'
VOC2012/
'
],
img_scale
=
(
1000
,
600
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0.5
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
)),
val
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'
VOC2007/ImageSets/Main/test.txt
'
,
img_prefix
=
data_root
+
'
VOC2007/
'
,
img_scale
=
(
1000
,
600
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_crowd
=
True
,
with_label
=
True
),
test
=
dict
(
type
=
dataset_type
,
ann_file
=
data_root
+
'
VOC2007/ImageSets/Main/test.txt
'
,
img_prefix
=
data_root
+
'
VOC2007/
'
,
img_scale
=
(
1000
,
600
),
img_norm_cfg
=
img_norm_cfg
,
size_divisor
=
32
,
flip_ratio
=
0
,
with_mask
=
False
,
with_label
=
False
,
test_mode
=
True
))
# optimizer
optimizer
=
dict
(
type
=
'
SGD
'
,
lr
=
0.01
,
momentum
=
0.9
,
weight_decay
=
0.0001
)
optimizer_config
=
dict
(
grad_clip
=
dict
(
max_norm
=
35
,
norm_type
=
2
))
# learning policy
lr_config
=
dict
(
policy
=
'
step
'
,
step
=
[
3
])
# actual epoch = 3 * 3 = 9
checkpoint_config
=
dict
(
interval
=
1
)
# yapf:disable
log_config
=
dict
(
interval
=
50
,
hooks
=
[
dict
(
type
=
'
TextLoggerHook
'
),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs
=
4
# actual epoch = 4 * 3 = 12
dist_params
=
dict
(
backend
=
'
nccl
'
)
log_level
=
'
INFO
'
work_dir
=
'
./work_dirs/faster_rcnn_r50_fpn_1x_voc0712
'
load_from
=
None
resume_from
=
None
workflow
=
[(
'
train
'
,
1
)]
This diff is collapsed.
Click to expand it.
tools/voc_eval.py
0 → 100644
+
62
−
0
View file @
d568f7bf
from
argparse
import
ArgumentParser
import
mmcv
import
numpy
as
np
from
mmdet
import
datasets
from
mmdet.core
import
eval_map
def
voc_eval
(
result_file
,
dataset
,
iou_thr
=
0.5
):
det_results
=
mmcv
.
load
(
result_file
)
gt_bboxes
=
[]
gt_labels
=
[]
gt_ignore
=
[]
for
i
in
range
(
len
(
dataset
)):
ann
=
dataset
.
get_ann_info
(
i
)
bboxes
=
ann
[
'
bboxes
'
]
labels
=
ann
[
'
labels
'
]
if
'
bboxes_ignore
'
in
ann
:
ignore
=
np
.
concatenate
([
np
.
zeros
(
bboxes
.
shape
[
0
],
dtype
=
np
.
bool
),
np
.
ones
(
ann
[
'
bboxes_ignore
'
].
shape
[
0
],
dtype
=
np
.
bool
)
])
gt_ignore
.
append
(
ignore
)
bboxes
=
np
.
vstack
([
bboxes
,
ann
[
'
bboxes_ignore
'
]])
labels
=
np
.
concatenate
([
labels
,
ann
[
'
labels_ignore
'
]])
gt_bboxes
.
append
(
bboxes
)
gt_labels
.
append
(
labels
)
if
not
gt_ignore
:
gt_ignore
=
gt_ignore
if
hasattr
(
dataset
,
'
year
'
)
and
dataset
.
year
==
2007
:
dataset_name
=
'
voc07
'
else
:
dataset_name
=
dataset
.
CLASSES
eval_map
(
det_results
,
gt_bboxes
,
gt_labels
,
gt_ignore
=
gt_ignore
,
scale_ranges
=
None
,
iou_thr
=
iou_thr
,
dataset
=
dataset_name
,
print_summary
=
True
)
def
main
():
parser
=
ArgumentParser
(
description
=
'
VOC Evaluation
'
)
parser
.
add_argument
(
'
result
'
,
help
=
'
result file path
'
)
parser
.
add_argument
(
'
config
'
,
help
=
'
config file path
'
)
parser
.
add_argument
(
'
--iou-thr
'
,
type
=
float
,
default
=
0.5
,
help
=
'
IoU threshold for evaluation
'
)
args
=
parser
.
parse_args
()
cfg
=
mmcv
.
Config
.
fromfile
(
args
.
config
)
test_dataset
=
mmcv
.
runner
.
obj_from_dict
(
cfg
.
data
.
test
,
datasets
)
voc_eval
(
args
.
result
,
test_dataset
,
args
.
iou_thr
)
if
__name__
==
'
__main__
'
:
main
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment