Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
food-round2
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Joel Joseph
food-round2
Commits
9df04d54
Unverified
Commit
9df04d54
authored
5 years ago
by
Kai Chen
Committed by
GitHub
5 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Potential bug fix for GuidedAnchorHead (#754)
* code formatting for guided_anchor_head.py * bug fix for using multi_apply
parent
726ebdc9
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
mmdet/models/anchor_heads/guided_anchor_head.py
+99
-82
99 additions, 82 deletions
mmdet/models/anchor_heads/guided_anchor_head.py
with
99 additions
and
82 deletions
mmdet/models/anchor_heads/guided_anchor_head.py
+
99
−
82
View file @
9df04d54
...
...
@@ -36,15 +36,14 @@ class FeatureAdaption(nn.Module):
deformable_groups
=
4
):
super
(
FeatureAdaption
,
self
).
__init__
()
offset_channels
=
kernel_size
*
kernel_size
*
2
self
.
conv_offset
=
nn
.
Conv2d
(
2
,
deformable_groups
*
offset_channels
,
1
,
bias
=
False
)
self
.
conv_adaption
=
DeformConv
(
in_channels
,
out_channels
,
kernel_size
=
kernel_size
,
padding
=
(
kernel_size
-
1
)
//
2
,
deformable_groups
=
deformable_groups
)
self
.
conv_offset
=
nn
.
Conv2d
(
2
,
deformable_groups
*
offset_channels
,
1
,
bias
=
False
)
self
.
conv_adaption
=
DeformConv
(
in_channels
,
out_channels
,
kernel_size
=
kernel_size
,
padding
=
(
kernel_size
-
1
)
//
2
,
deformable_groups
=
deformable_groups
)
self
.
relu
=
nn
.
ReLU
(
inplace
=
True
)
def
init_weights
(
self
):
...
...
@@ -109,20 +108,23 @@ class GuidedAnchorHead(AnchorHead):
target_stds
=
(
1.0
,
1.0
,
1.0
,
1.0
),
deformable_groups
=
4
,
loc_filter_thr
=
0.01
,
loss_loc
=
dict
(
type
=
'
FocalLoss
'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_shape
=
dict
(
type
=
'
IoULoss
'
,
style
=
'
bounded
'
,
beta
=
0.2
,
loss_weight
=
1.0
),
loss_cls
=
dict
(
type
=
'
CrossEntropyLoss
'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'
SmoothL1Loss
'
,
beta
=
1.0
,
loss_weight
=
1.0
)):
loss_loc
=
dict
(
type
=
'
FocalLoss
'
,
use_sigmoid
=
True
,
gamma
=
2.0
,
alpha
=
0.25
,
loss_weight
=
1.0
),
loss_shape
=
dict
(
type
=
'
IoULoss
'
,
style
=
'
bounded
'
,
beta
=
0.2
,
loss_weight
=
1.0
),
loss_cls
=
dict
(
type
=
'
CrossEntropyLoss
'
,
use_sigmoid
=
True
,
loss_weight
=
1.0
),
loss_bbox
=
dict
(
type
=
'
SmoothL1Loss
'
,
beta
=
1.0
,
loss_weight
=
1.0
)):
super
(
AnchorHead
,
self
).
__init__
()
self
.
in_channels
=
in_channels
self
.
num_classes
=
num_classes
...
...
@@ -258,8 +260,8 @@ class GuidedAnchorHead(AnchorHead):
inside_flags_list
.
append
(
inside_flags
)
# inside_flag for a position is true if any anchor in this
# position is true
inside_flags
=
(
torch
.
stack
(
inside_flags_list
,
0
).
sum
(
dim
=
0
)
>
0
)
inside_flags
=
(
torch
.
stack
(
inside_flags_list
,
0
).
sum
(
dim
=
0
)
>
0
)
multi_level_flags
.
append
(
inside_flags
)
inside_flag_list
.
append
(
multi_level_flags
)
return
approxs_list
,
inside_flag_list
...
...
@@ -347,11 +349,12 @@ class GuidedAnchorHead(AnchorHead):
-
1
,
2
).
detach
()[
mask
]
bbox_deltas
=
anchor_deltas
.
new_full
(
squares
.
size
(),
0
)
bbox_deltas
[:,
2
:]
=
anchor_deltas
guided_anchors
=
delta2bbox
(
squares
,
bbox_deltas
,
self
.
anchoring_means
,
self
.
anchoring_stds
,
wh_ratio_clip
=
1e-6
)
guided_anchors
=
delta2bbox
(
squares
,
bbox_deltas
,
self
.
anchoring_means
,
self
.
anchoring_stds
,
wh_ratio_clip
=
1e-6
)
return
guided_anchors
,
mask
def
loss_shape_single
(
self
,
shape_pred
,
bbox_anchors
,
bbox_gts
,
...
...
@@ -368,23 +371,26 @@ class GuidedAnchorHead(AnchorHead):
bbox_anchors_
=
bbox_anchors
[
inds
]
bbox_gts_
=
bbox_gts
[
inds
]
anchor_weights_
=
anchor_weights
[
inds
]
pred_anchors_
=
delta2bbox
(
bbox_anchors_
,
bbox_deltas_
,
self
.
anchoring_means
,
self
.
anchoring_stds
,
wh_ratio_clip
=
1e-6
)
loss_shape
=
self
.
loss_shape
(
pred_anchors_
,
bbox_gts_
,
anchor_weights_
,
avg_factor
=
anchor_total_num
)
pred_anchors_
=
delta2bbox
(
bbox_anchors_
,
bbox_deltas_
,
self
.
anchoring_means
,
self
.
anchoring_stds
,
wh_ratio_clip
=
1e-6
)
loss_shape
=
self
.
loss_shape
(
pred_anchors_
,
bbox_gts_
,
anchor_weights_
,
avg_factor
=
anchor_total_num
)
return
loss_shape
def
loss_loc_single
(
self
,
loc_pred
,
loc_target
,
loc_weight
,
loc_avg_factor
,
cfg
):
loss_loc
=
self
.
loss_loc
(
loc_pred
.
reshape
(
-
1
,
1
),
loc_target
.
reshape
(
-
1
,
1
).
long
(),
loc_weight
.
reshape
(
-
1
,
1
),
avg_factor
=
loc_avg_factor
)
loss_loc
=
self
.
loss_loc
(
loc_pred
.
reshape
(
-
1
,
1
),
loc_target
.
reshape
(
-
1
,
1
).
long
(),
loc_weight
.
reshape
(
-
1
,
1
),
avg_factor
=
loc_avg_factor
)
return
loss_loc
def
loss
(
self
,
...
...
@@ -418,41 +424,44 @@ class GuidedAnchorHead(AnchorHead):
# get shape targets
sampling
=
False
if
not
hasattr
(
cfg
,
'
ga_sampler
'
)
else
True
shape_targets
=
ga_shape_target
(
approxs_list
,
inside_flag_list
,
squares_list
,
gt_bboxes
,
img_metas
,
self
.
approxs_per_octave
,
cfg
,
sampling
=
sampling
)
shape_targets
=
ga_shape_target
(
approxs_list
,
inside_flag_list
,
squares_list
,
gt_bboxes
,
img_metas
,
self
.
approxs_per_octave
,
cfg
,
sampling
=
sampling
)
if
shape_targets
is
None
:
return
None
(
bbox_anchors_list
,
bbox_gts_list
,
anchor_weights_list
,
anchor_fg_num
,
anchor_bg_num
)
=
shape_targets
anchor_total_num
=
(
anchor_fg_num
if
not
sampling
else
anchor_fg_num
+
anchor_bg_num
)
anchor_total_num
=
(
anchor_fg_num
if
not
sampling
else
anchor_fg_num
+
anchor_bg_num
)
# get anchor targets
sampling
=
False
if
self
.
cls_focal_loss
else
True
label_channels
=
self
.
cls_out_channels
if
self
.
use_sigmoid_cls
else
1
cls_reg_targets
=
anchor_target
(
guided_anchors_list
,
inside_flag_list
,
gt_bboxes
,
img_metas
,
self
.
target_means
,
self
.
target_stds
,
cfg
,
gt_bboxes_ignore_list
=
gt_bboxes_ignore
,
gt_labels_list
=
gt_labels
,
label_channels
=
label_channels
,
sampling
=
sampling
)
cls_reg_targets
=
anchor_target
(
guided_anchors_list
,
inside_flag_list
,
gt_bboxes
,
img_metas
,
self
.
target_means
,
self
.
target_stds
,
cfg
,
gt_bboxes_ignore_list
=
gt_bboxes_ignore
,
gt_labels_list
=
gt_labels
,
label_channels
=
label_channels
,
sampling
=
sampling
)
if
cls_reg_targets
is
None
:
return
None
(
labels_list
,
label_weights_list
,
bbox_targets_list
,
bbox_weights_list
,
num_total_pos
,
num_total_neg
)
=
cls_reg_targets
num_total_samples
=
(
num_total_pos
if
self
.
cls_focal_loss
else
num_total_pos
+
num_total_neg
)
num_total_samples
=
(
num_total_pos
if
self
.
cls_focal_loss
else
num_total_pos
+
num_total_neg
)
# get classification and bbox regression losses
losses_cls
,
losses_bbox
=
multi_apply
(
...
...
@@ -467,24 +476,32 @@ class GuidedAnchorHead(AnchorHead):
cfg
=
cfg
)
# get anchor location loss
losses_loc
,
=
multi_apply
(
self
.
loss_loc_single
,
loc_preds
,
loc_targets
,
loc_weights
,
loc_avg_factor
=
loc_avg_factor
,
cfg
=
cfg
)
losses_loc
=
[]
for
i
in
range
(
len
(
loc_preds
)):
loss_loc
=
self
.
loss_loc_single
(
loc_preds
[
i
],
loc_targets
[
i
],
loc_weights
[
i
],
loc_avg_factor
=
loc_avg_factor
,
cfg
=
cfg
)
losses_loc
.
append
(
loss_loc
)
# get anchor shape loss
losses_shape
,
=
multi_apply
(
self
.
loss_shape_single
,
shape_preds
,
bbox_anchors_list
,
bbox_gts_list
,
anchor_weights_list
,
anchor_total_num
=
anchor_total_num
)
return
dict
(
loss_cls
=
losses_cls
,
loss_bbox
=
losses_bbox
,
loss_shape
=
losses_shape
,
loss_loc
=
losses_loc
)
losses_shape
=
[]
for
i
in
range
(
len
(
shape_preds
)):
loss_shape
=
self
.
loss_shape_single
(
shape_preds
[
i
],
bbox_anchors_list
[
i
],
bbox_gts_list
[
i
],
anchor_weights_list
[
i
],
anchor_total_num
=
anchor_total_num
)
losses_shape
.
append
(
loss_shape
)
return
dict
(
loss_cls
=
losses_cls
,
loss_bbox
=
losses_bbox
,
loss_shape
=
losses_shape
,
loss_loc
=
losses_loc
)
def
get_bboxes
(
self
,
cls_scores
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment