Skip to content
Snippets Groups Projects
Commit 7640a04b authored by Kai Chen's avatar Kai Chen
Browse files

add dcn models

parent a7b41d8d
No related branches found
No related tags found
No related merge requests found
...@@ -184,6 +184,28 @@ We released RPN, Faster R-CNN and Mask R-CNN models in the first version. More m ...@@ -184,6 +184,28 @@ We released RPN, Faster R-CNN and Mask R-CNN models in the first version. More m
- The `3x` schedule is epoch [28, 34, 36]. - The `3x` schedule is epoch [28, 34, 36].
- The memory is measured with `torch.cuda.max_memory_allocated()` instead of `torch.cuda.max_memory_cached()`. We will update the memory usage of other models in the future. - The memory is measured with `torch.cuda.max_memory_allocated()` instead of `torch.cuda.max_memory_cached()`. We will update the memory usage of other models in the future.
### Deformable Convolution v2
| Backbone | Model | Style | Conv | Pool | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:---------:|:------------:|:-------:|:-------------:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 3.9 | 0.594 | 10.2 | 40.0 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-e41688c9.pth) |
| R-50-FPN | Faster | pytorch | mdconv(c3-c5) | - | 1x | 3.7 | 0.598 | 10.0 | 40.3 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-1b768045.pth) |
| R-50-FPN | Faster | pytorch | - | dpool | 1x | 4.6 | 0.714 | 8.7 | 37.9 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dpool_r50_fpn_1x_20190125-f4fc1d70.pth) |
| R-50-FPN | Faster | pytorch | - | mdpool | 1x | 5.2 | 0.769 | 8.2 | 38.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdpool_r50_fpn_1x_20190125-473d0f3d.pth) |
| R-101-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 5.8 | 0.811 | 8.0 | 42.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-a7e31b65.pth) |
| R-50-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.1 | 37.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-4f94ff79.pth) |
| R-50-FPN | Mask | pytorch | mdconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.4 | 37.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-c5601dc3.pth) |
| R-101-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 6.4 | 0.939 | 6.5 | 43.2 | 38.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-decb6db5.pth) |
| R-50-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 4.4 | 0.660 | 7.6 | 44.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-dfa53166.pth) |
| R-101-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 6.3 | 0.881 | 6.8 | 45.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-aaa877cc.pth) |
| R-50-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 6.6 | 0.942 | 5.7 | 44.5 | 38.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-09d8a443.pth) |
| R-101-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 8.5 | 1.156 | 5.1 | 45.8 | 39.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-0d62c190.pth) |
**Notes:**
- `dconv` and `mdconv` denote (modulated) deformable convolution, `c3-c5` means adding dconv in resnet stage 3 to 5. `dpool` and `mdpool` denote (modulated) deformable roi pooling.
- The memory is measured with `torch.cuda.max_memory_allocated()`. The batch size is 16 (2 images per GPU).
- The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch, which should be more memory efficient and slightly faster.
## Comparison with Detectron ## Comparison with Detectron
......
...@@ -78,6 +78,7 @@ Results and models are available in the [Model zoo](MODEL_ZOO.md). ...@@ -78,6 +78,7 @@ Results and models are available in the [Model zoo](MODEL_ZOO.md).
| RetinaNet | ✓ | ✓ | ☐ | ✗ | | RetinaNet | ✓ | ✓ | ☐ | ✗ |
Other features Other features
- [x] DCNv2
- [x] Group Normalization - [x] Group Normalization
- [x] OHEM - [x] OHEM
- [x] Soft-NMS - [x] Soft-NMS
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment