Skip to content
Snippets Groups Projects
Commit 67670299 authored by Kai Chen's avatar Kai Chen
Browse files

reorg the model zoo

parent 2a0f2c27
No related branches found
No related tags found
No related merge requests found
......@@ -148,7 +148,17 @@ More models with different backbones will be added to the model zoo.
### Hybrid Task Cascade (HTC)
Please refer to [HTC](configs/htc/README.md) for details.
| Backbone | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:---------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | pytorch | 1x | 7.4 | 0.936 | 3.5 | 42.2 | 37.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_1x_20190408-878c1712.pth) |
| R-50-FPN | pytorch | 20e | - | - | - | 43.2 | 38.0 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_20e_20190408-c03b7015.pth) |
| R-101-FPN | pytorch | 20e | 9.3 | 1.051 | 3.4 | 44.9 | 39.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r101_fpn_20e_20190408-a2e586db.pth) |
| X-101-32x4d-FPN | pytorch |20e| 5.8 | 0.769 | 3.3 | 46.1 | 40.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_32x4d_fpn_20e_20190408-9eae4d0b.pth) |
| X-101-64x4d-FPN | pytorch |20e| 7.5 | 1.120 | 3.0 | 47.0 | 40.9 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_64x4d_fpn_20e_20190408-497f2561.pth) |
**Notes:**
- Please refer to [Hybrid Task Cascade](configs/gn/README.md) for details and more a powerful model (50.7/43.9).
### SSD
......@@ -172,41 +182,16 @@ Please refer to [HTC](configs/htc/README.md) for details.
### Group Normalization (GN)
| Backbone | model | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:-------------:|:----------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN (d) | Mask R-CNN | 2x | 7.2 | 0.806 | 5.4 | 39.9 | 36.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_2x_20180113-86832cf2.pth) |
| R-50-FPN (d) | Mask R-CNN | 3x | 7.2 | 0.806 | 5.4 | 40.2 | 36.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_3x_20180113-8e82f48d.pth) |
| R-101-FPN (d) | Mask R-CNN | 2x | 9.9 | 0.970 | 4.8 | 41.6 | 37.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_gn_2x_20180113-9598649c.pth) |
| R-101-FPN (d) | Mask R-CNN | 3x | 9.9 | 0.970 | 4.8 | 41.7 | 37.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_gn_3x_20180113-a14ffb96.pth) |
| R-50-FPN (c) | Mask R-CNN | 2x | 7.2 | 0.806 | 5.4 | 39.7 | 35.9 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_contrib_2x_20180113-ec93305c.pth) |
| R-50-FPN (c) | Mask R-CNN | 3x | 7.2 | 0.806 | 5.4 | 40.1 | 36.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_contrib_3x_20180113-9d230cab.pth) |
Please refer to [Group Normalization](configs/gn/README.md) for details.
**Notes:**
- (d) means pretrained model converted from Detectron, and (c) means the contributed model pretrained by [@thangvubk](https://github.com/thangvubk).
- The `3x` schedule is epoch [28, 34, 36].
### Weight Standardization
### Deformable Convolution v2
Please refer to [Weight Standardization](configs/gn+ws/README.md) for details.
| Backbone | Model | Style | Conv | Pool | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:---------:|:------------:|:-------:|:-------------:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 3.9 | 0.594 | 10.2 | 40.0 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-e41688c9.pth) |
| R-50-FPN | Faster | pytorch | mdconv(c3-c5) | - | 1x | 3.7 | 0.598 | 10.0 | 40.3 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-1b768045.pth) |
| R-50-FPN | Faster | pytorch | - | dpool | 1x | 4.6 | 0.714 | 8.7 | 37.9 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dpool_r50_fpn_1x_20190125-f4fc1d70.pth) |
| R-50-FPN | Faster | pytorch | - | mdpool | 1x | 5.2 | 0.769 | 8.2 | 38.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdpool_r50_fpn_1x_20190125-473d0f3d.pth) |
| R-101-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 5.8 | 0.811 | 8.0 | 42.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-a7e31b65.pth) |
| X-101-32x4d-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 7.1 | 1.126 | 6.6 | 43.5 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_x101_32x4d_fpn_1x_20190201-6d46376f.pth) |
| R-50-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.1 | 37.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-4f94ff79.pth) |
| R-50-FPN | Mask | pytorch | mdconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.4 | 37.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-c5601dc3.pth) |
| R-101-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 6.4 | 0.939 | 6.5 | 43.2 | 38.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-decb6db5.pth) |
| R-50-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 4.4 | 0.660 | 7.6 | 44.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-dfa53166.pth) |
| R-101-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 6.3 | 0.881 | 6.8 | 45.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-aaa877cc.pth) |
| R-50-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 6.6 | 0.942 | 5.7 | 44.5 | 38.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-09d8a443.pth) |
| R-101-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 8.5 | 1.156 | 5.1 | 45.8 | 39.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-0d62c190.pth) |
### Deformable Convolution v2
**Notes:**
Please refer to [Deformable Convolutional Networks](configs/dcn/README.md) for details.
- `dconv` and `mdconv` denote (modulated) deformable convolution, `c3-c5` means adding dconv in resnet stage 3 to 5. `dpool` and `mdpool` denote (modulated) deformable roi pooling.
- The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch, which should be more memory efficient and slightly faster.
## Comparison with Detectron and maskrcnn-benchmark
......
# Deformable Convolutional Networks
# Introduction
```
@inproceedings{dai2017deformable,
title={Deformable Convolutional Networks},
author={Dai, Jifeng and Qi, Haozhi and Xiong, Yuwen and Li, Yi and Zhang, Guodong and Hu, Han and Wei, Yichen},
booktitle={Proceedings of the IEEE international conference on computer vision},
year={2017}
}
@article{zhu2018deformable,
title={Deformable ConvNets v2: More Deformable, Better Results},
author={Zhu, Xizhou and Hu, Han and Lin, Stephen and Dai, Jifeng},
journal={arXiv preprint arXiv:1811.11168},
year={2018}
}
```
## Results and Models
| Backbone | Model | Style | Conv | Pool | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:---------:|:------------:|:-------:|:-------------:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 3.9 | 0.594 | 10.2 | 40.0 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-e41688c9.pth) |
| R-50-FPN | Faster | pytorch | mdconv(c3-c5) | - | 1x | 3.7 | 0.598 | 10.0 | 40.3 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-1b768045.pth) |
| R-50-FPN | Faster | pytorch | - | dpool | 1x | 4.6 | 0.714 | 8.7 | 37.9 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dpool_r50_fpn_1x_20190125-f4fc1d70.pth) |
| R-50-FPN | Faster | pytorch | - | mdpool | 1x | 5.2 | 0.769 | 8.2 | 38.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_mdpool_r50_fpn_1x_20190125-473d0f3d.pth) |
| R-101-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 5.8 | 0.811 | 8.0 | 42.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-a7e31b65.pth) |
| X-101-32x4d-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 7.1 | 1.126 | 6.6 | 43.5 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/faster_rcnn_dconv_c3-c5_x101_32x4d_fpn_1x_20190201-6d46376f.pth) |
| R-50-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.1 | 37.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-4f94ff79.pth) |
| R-50-FPN | Mask | pytorch | mdconv(c3-c5) | - | 1x | 4.5 | 0.712 | 7.7 | 41.4 | 37.4 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_mdconv_c3-c5_r50_fpn_1x_20190125-c5601dc3.pth) |
| R-101-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 6.4 | 0.939 | 6.5 | 43.2 | 38.7 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-decb6db5.pth) |
| R-50-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 4.4 | 0.660 | 7.6 | 44.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-dfa53166.pth) |
| R-101-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 6.3 | 0.881 | 6.8 | 45.1 | - | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-aaa877cc.pth) |
| R-50-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 6.6 | 0.942 | 5.7 | 44.5 | 38.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r50_fpn_1x_20190125-09d8a443.pth) |
| R-101-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 8.5 | 1.156 | 5.1 | 45.8 | 39.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/dcn/cascade_mask_rcnn_dconv_c3-c5_r101_fpn_1x_20190125-0d62c190.pth) |
**Notes:**
- `dconv` and `mdconv` denote (modulated) deformable convolution, `c3-c5` means adding dconv in resnet stage 3 to 5. `dpool` and `mdpool` denote (modulated) deformable roi pooling.
- The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch, which should be more memory efficient and slightly faster.
\ No newline at end of file
# Group Normalization
## Introduction
```
@inproceedings{wu2018group,
title={Group Normalization},
author={Wu, Yuxin and He, Kaiming},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2018}
}
```
## Results and Models
| Backbone | model | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:-------------:|:----------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN (d) | Mask R-CNN | 2x | 7.2 | 0.806 | 5.4 | 39.9 | 36.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_2x_20180113-86832cf2.pth) |
| R-50-FPN (d) | Mask R-CNN | 3x | 7.2 | 0.806 | 5.4 | 40.2 | 36.5 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_3x_20180113-8e82f48d.pth) |
| R-101-FPN (d) | Mask R-CNN | 2x | 9.9 | 0.970 | 4.8 | 41.6 | 37.1 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_gn_2x_20180113-9598649c.pth) |
| R-101-FPN (d) | Mask R-CNN | 3x | 9.9 | 0.970 | 4.8 | 41.7 | 37.3 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_gn_3x_20180113-a14ffb96.pth) |
| R-50-FPN (c) | Mask R-CNN | 2x | 7.2 | 0.806 | 5.4 | 39.7 | 35.9 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_contrib_2x_20180113-ec93305c.pth) |
| R-50-FPN (c) | Mask R-CNN | 3x | 7.2 | 0.806 | 5.4 | 40.1 | 36.2 | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_gn_contrib_3x_20180113-9d230cab.pth) |
**Notes:**
- (d) means pretrained model converted from Detectron, and (c) means the contributed model pretrained by [@thangvubk](https://github.com/thangvubk).
- The `3x` schedule is epoch [28, 34, 36].
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment