Skip to content
Snippets Groups Projects
Commit 36b6577e authored by WU Yue's avatar WU Yue Committed by Kai Chen
Browse files

Code for "Double-Head RCNN: Rethinking Classification and Localization for Object Detection" (#809)

* add major components for training double head

double head only with two losses and no attention

remove double_head detector for now, merge upchannel to double_head bbox head

change the stype using yapl

remove uncessary comment#

to pass check

to pass v2

to pass v3

line too long and style again

reuse bottlenet

* refactoring

* bug fix

* bug fix for weight initialization

* add reg roi scale factor and modify loss weights

* rescale the roi after mapping to fpn levels
parent 699cb914
No related branches found
No related tags found
No related merge requests found
# model settings
model = dict(
type='DoubleHeadRCNN',
pretrained='modelzoo://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_scales=[8],
anchor_ratios=[0.5, 1.0, 2.0],
anchor_strides=[4, 8, 16, 32, 64],
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0],
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', out_size=7, sample_num=2),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
reg_roi_scale_factor=1.3,
bbox_head=dict(
type='DoubleConvFCBBoxHead',
num_convs=4,
num_fcs=2,
in_channels=256,
conv_out_channels=1024,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=81,
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2],
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0)))
# model training and testing settings
train_cfg = dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_across_levels=False,
nms_pre=2000,
nms_post=2000,
max_num=2000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False))
test_cfg = dict(
rpn=dict(
nms_across_levels=False,
nms_pre=1000,
nms_post=1000,
max_num=1000,
nms_thr=0.7,
min_bbox_size=0),
rcnn=dict(
score_thr=0.05, nms=dict(type='nms', iou_thr=0.5), max_per_img=100)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_thr=0.5, min_score=0.05)
)
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0.5,
with_mask=False,
with_crowd=True,
with_label=True),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_crowd=True,
with_label=True),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(1333, 800),
img_norm_cfg=img_norm_cfg,
size_divisor=32,
flip_ratio=0,
with_mask=False,
with_label=False,
test_mode=True))
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[8, 11])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 12
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/dh_faster_rcnn_r50_fpn_1x'
load_from = None
resume_from = None
workflow = [('train', 1)]
from .bbox_head import BBoxHead
from .convfc_bbox_head import ConvFCBBoxHead, SharedFCBBoxHead
from .double_bbox_head import DoubleConvFCBBoxHead
__all__ = ['BBoxHead', 'ConvFCBBoxHead', 'SharedFCBBoxHead']
__all__ = [
'BBoxHead', 'ConvFCBBoxHead', 'SharedFCBBoxHead', 'DoubleConvFCBBoxHead'
]
import torch.nn as nn
from mmcv.cnn.weight_init import normal_init, xavier_init
from .bbox_head import BBoxHead
from ..backbones.resnet import Bottleneck
from ..registry import HEADS
from ..utils import ConvModule
class BasicResBlock(nn.Module):
"""Basic residual block.
This block is a little different from the block in the ResNet backbone.
The kernel size of conv1 is 1 in this block while 3 in ResNet BasicBlock.
Args:
in_channels (int): Channels of the input feature map.
out_channels (int): Channels of the output feature map.
conv_cfg (dict): The config dict for convolution layers.
norm_cfg (dict): The config dict for normalization layers.
"""
def __init__(self,
in_channels,
out_channels,
conv_cfg=None,
norm_cfg=dict(type='BN')):
super(BasicResBlock, self).__init__()
# main path
self.conv1 = ConvModule(
in_channels,
in_channels,
kernel_size=3,
padding=1,
bias=False,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
self.conv2 = ConvModule(
in_channels,
out_channels,
kernel_size=1,
bias=False,
activation=None,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg)
# identity path
self.conv_identity = ConvModule(
in_channels,
out_channels,
kernel_size=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
activation=None)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.conv2(x)
identity = self.conv_identity(identity)
out = x + identity
out = self.relu(out)
return out
@HEADS.register_module
class DoubleConvFCBBoxHead(BBoxHead):
"""Bbox head used in Double-Head R-CNN
/-> cls
/-> shared convs ->
\-> reg
roi features
/-> cls
\-> shared fc ->
\-> reg
""" # noqa: W605
def __init__(self,
num_convs=0,
num_fcs=0,
conv_out_channels=1024,
fc_out_channels=1024,
conv_cfg=None,
norm_cfg=dict(type='BN'),
**kwargs):
kwargs.setdefault('with_avg_pool', True)
super(DoubleConvFCBBoxHead, self).__init__(**kwargs)
assert self.with_avg_pool
assert num_convs > 0
assert num_fcs > 0
self.num_convs = num_convs
self.num_fcs = num_fcs
self.conv_out_channels = conv_out_channels
self.fc_out_channels = fc_out_channels
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
# increase the channel of input features
self.res_block = BasicResBlock(self.in_channels,
self.conv_out_channels)
# add conv heads
self.conv_branch = self._add_conv_branch()
# add fc heads
self.fc_branch = self._add_fc_branch()
out_dim_reg = 4 if self.reg_class_agnostic else 4 * self.num_classes
self.fc_reg = nn.Linear(self.conv_out_channels, out_dim_reg)
self.fc_cls = nn.Linear(self.fc_out_channels, self.num_classes)
self.relu = nn.ReLU(inplace=True)
def _add_conv_branch(self):
"""Add the fc branch which consists of a sequential of conv layers"""
branch_convs = nn.ModuleList()
for i in range(self.num_convs):
branch_convs.append(
Bottleneck(
inplanes=self.conv_out_channels,
planes=self.conv_out_channels // 4,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg))
return branch_convs
def _add_fc_branch(self):
"""Add the fc branch which consists of a sequential of fc layers"""
branch_fcs = nn.ModuleList()
for i in range(self.num_fcs):
fc_in_channels = (
self.in_channels * self.roi_feat_size *
self.roi_feat_size if i == 0 else self.fc_out_channels)
branch_fcs.append(nn.Linear(fc_in_channels, self.fc_out_channels))
return branch_fcs
def init_weights(self):
normal_init(self.fc_cls, std=0.01)
normal_init(self.fc_reg, std=0.001)
for m in self.fc_branch.modules():
if isinstance(m, nn.Linear):
xavier_init(m, distribution='uniform')
def forward(self, x_cls, x_reg):
# conv head
x_conv = self.res_block(x_reg)
for conv in self.conv_branch:
x_conv = conv(x_conv)
if self.with_avg_pool:
x_conv = self.avg_pool(x_conv)
x_conv = x_conv.view(x_conv.size(0), -1)
bbox_pred = self.fc_reg(x_conv)
# fc head
x_fc = x_cls.view(x_cls.size(0), -1)
for fc in self.fc_branch:
x_fc = self.relu(fc(x_fc))
cls_score = self.fc_cls(x_fc)
return cls_score, bbox_pred
......@@ -6,6 +6,7 @@ from .fast_rcnn import FastRCNN
from .faster_rcnn import FasterRCNN
from .mask_rcnn import MaskRCNN
from .cascade_rcnn import CascadeRCNN
from .double_head_rcnn import DoubleHeadRCNN
from .htc import HybridTaskCascade
from .retinanet import RetinaNet
from .fcos import FCOS
......@@ -15,5 +16,5 @@ from .mask_scoring_rcnn import MaskScoringRCNN
__all__ = [
'BaseDetector', 'SingleStageDetector', 'TwoStageDetector', 'RPN',
'FastRCNN', 'FasterRCNN', 'MaskRCNN', 'CascadeRCNN', 'HybridTaskCascade',
'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN'
'DoubleHeadRCNN', 'RetinaNet', 'FCOS', 'GridRCNN', 'MaskScoringRCNN'
]
import torch
from .two_stage import TwoStageDetector
from ..registry import DETECTORS
from mmdet.core import bbox2roi, build_assigner, build_sampler
@DETECTORS.register_module
class DoubleHeadRCNN(TwoStageDetector):
def __init__(self, reg_roi_scale_factor, **kwargs):
super().__init__(**kwargs)
self.reg_roi_scale_factor = reg_roi_scale_factor
def forward_train(self,
img,
img_meta,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=None,
gt_masks=None,
proposals=None):
x = self.extract_feat(img)
losses = dict()
# RPN forward and loss
if self.with_rpn:
rpn_outs = self.rpn_head(x)
rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta,
self.train_cfg.rpn)
rpn_losses = self.rpn_head.loss(
*rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
losses.update(rpn_losses)
proposal_cfg = self.train_cfg.get('rpn_proposal',
self.test_cfg.rpn)
proposal_inputs = rpn_outs + (img_meta, proposal_cfg)
proposal_list = self.rpn_head.get_bboxes(*proposal_inputs)
else:
proposal_list = proposals
# assign gts and sample proposals
if self.with_bbox or self.with_mask:
bbox_assigner = build_assigner(self.train_cfg.rcnn.assigner)
bbox_sampler = build_sampler(
self.train_cfg.rcnn.sampler, context=self)
num_imgs = img.size(0)
if gt_bboxes_ignore is None:
gt_bboxes_ignore = [None for _ in range(num_imgs)]
sampling_results = []
for i in range(num_imgs):
assign_result = bbox_assigner.assign(proposal_list[i],
gt_bboxes[i],
gt_bboxes_ignore[i],
gt_labels[i])
sampling_result = bbox_sampler.sample(
assign_result,
proposal_list[i],
gt_bboxes[i],
gt_labels[i],
feats=[lvl_feat[i][None] for lvl_feat in x])
sampling_results.append(sampling_result)
# bbox head forward and loss
if self.with_bbox:
rois = bbox2roi([res.bboxes for res in sampling_results])
# TODO: a more flexible way to decide which feature maps to use
bbox_cls_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs], rois)
bbox_reg_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.reg_roi_scale_factor)
if self.with_shared_head:
bbox_cls_feats = self.shared_head(bbox_cls_feats)
bbox_reg_feats = self.shared_head(bbox_reg_feats)
cls_score, bbox_pred = self.bbox_head(bbox_cls_feats,
bbox_reg_feats)
bbox_targets = self.bbox_head.get_target(sampling_results,
gt_bboxes, gt_labels,
self.train_cfg.rcnn)
loss_bbox = self.bbox_head.loss(cls_score, bbox_pred,
*bbox_targets)
losses.update(loss_bbox)
# mask head forward and loss
if self.with_mask:
if not self.share_roi_extractor:
pos_rois = bbox2roi(
[res.pos_bboxes for res in sampling_results])
mask_feats = self.mask_roi_extractor(
x[:self.mask_roi_extractor.num_inputs], pos_rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
else:
pos_inds = []
device = bbox_cls_feats.device
for res in sampling_results:
pos_inds.append(
torch.ones(
res.pos_bboxes.shape[0],
device=device,
dtype=torch.uint8))
pos_inds.append(
torch.zeros(
res.neg_bboxes.shape[0],
device=device,
dtype=torch.uint8))
pos_inds = torch.cat(pos_inds)
mask_feats = bbox_cls_feats[pos_inds]
mask_pred = self.mask_head(mask_feats)
mask_targets = self.mask_head.get_target(sampling_results,
gt_masks,
self.train_cfg.rcnn)
pos_labels = torch.cat(
[res.pos_gt_labels for res in sampling_results])
loss_mask = self.mask_head.loss(mask_pred, mask_targets,
pos_labels)
losses.update(loss_mask)
return losses
def simple_test_bboxes(self,
x,
img_meta,
proposals,
rcnn_test_cfg,
rescale=False):
"""Test only det bboxes without augmentation."""
rois = bbox2roi(proposals)
bbox_cls_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs], rois)
bbox_reg_feats = self.bbox_roi_extractor(
x[:self.bbox_roi_extractor.num_inputs],
rois,
roi_scale_factor=self.reg_roi_scale_factor)
if self.with_shared_head:
bbox_cls_feats = self.shared_head(bbox_cls_feats)
bbox_reg_feats = self.shared_head(bbox_reg_feats)
cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats)
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
det_bboxes, det_labels = self.bbox_head.get_det_bboxes(
rois,
cls_score,
bbox_pred,
img_shape,
scale_factor,
rescale=rescale,
cfg=rcnn_test_cfg)
return det_bboxes, det_labels
......@@ -72,8 +72,22 @@ class SingleRoIExtractor(nn.Module):
target_lvls = target_lvls.clamp(min=0, max=num_levels - 1).long()
return target_lvls
def roi_rescale(self, rois, scale_factor):
cx = (rois[:, 1] + rois[:, 3]) * 0.5
cy = (rois[:, 2] + rois[:, 4]) * 0.5
w = rois[:, 3] - rois[:, 1] + 1
h = rois[:, 4] - rois[:, 2] + 1
new_w = w * scale_factor
new_h = h * scale_factor
x1 = cx - new_w * 0.5 + 0.5
x2 = cx + new_w * 0.5 - 0.5
y1 = cy - new_h * 0.5 + 0.5
y2 = cy + new_h * 0.5 - 0.5
new_rois = torch.stack((rois[:, 0], x1, y1, x2, y2), dim=-1)
return new_rois
@force_fp32(apply_to=('feats', ), out_fp16=True)
def forward(self, feats, rois):
def forward(self, feats, rois, roi_scale_factor=None):
if len(feats) == 1:
return self.roi_layers[0](feats[0], rois)
......@@ -82,6 +96,8 @@ class SingleRoIExtractor(nn.Module):
target_lvls = self.map_roi_levels(rois, num_levels)
roi_feats = feats[0].new_zeros(rois.size()[0], self.out_channels,
out_size, out_size)
if roi_scale_factor is not None:
rois = self.roi_rescale(rois, roi_scale_factor)
for i in range(num_levels):
inds = target_lvls == i
if inds.any():
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment