Forked from
nikhil_rayaprolu / food-round2
145 commits behind the upstream repository.
ssd300_coco.py 3.81 KiB
# model settings
input_size = 300
model = dict(
type='SingleStageDetector',
pretrained='open-mmlab://vgg16_caffe',
backbone=dict(
type='SSDVGG',
input_size=input_size,
depth=16,
with_last_pool=False,
ceil_mode=True,
out_indices=(3, 4),
out_feature_indices=(22, 34),
l2_norm_scale=20),
neck=None,
bbox_head=dict(
type='SSDHead',
input_size=input_size,
in_channels=(512, 1024, 512, 256, 256, 256),
num_classes=81,
anchor_strides=(8, 16, 32, 64, 100, 300),
basesize_ratio_range=(0.15, 0.9),
anchor_ratios=([2], [2, 3], [2, 3], [2, 3], [2], [2]),
target_means=(.0, .0, .0, .0),
target_stds=(0.1, 0.1, 0.2, 0.2)))
cudnn_benchmark = True
train_cfg = dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.,
ignore_iof_thr=-1,
gt_max_assign_all=False),
smoothl1_beta=1.,
allowed_border=-1,
pos_weight=-1,
neg_pos_ratio=3,
debug=False)
test_cfg = dict(
nms=dict(type='nms', iou_thr=0.45),
min_bbox_size=0,
score_thr=0.02,
max_per_img=200)
# model training and testing settings
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
data = dict(
imgs_per_gpu=8,
workers_per_gpu=3,
train=dict(
type='RepeatDataset',
times=5,
dataset=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_train2017.json',
img_prefix=data_root + 'train2017/',
img_scale=(300, 300),
img_norm_cfg=img_norm_cfg,
size_divisor=None,
flip_ratio=0.5,
with_mask=False,
with_crowd=False,
with_label=True,
test_mode=False,
extra_aug=dict(
photo_metric_distortion=dict(
brightness_delta=32,
contrast_range=(0.5, 1.5),
saturation_range=(0.5, 1.5),
hue_delta=18),
expand=dict(
mean=img_norm_cfg['mean'],
to_rgb=img_norm_cfg['to_rgb'],
ratio_range=(1, 4)),
random_crop=dict(
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3)),
resize_keep_ratio=False)),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(300, 300),
img_norm_cfg=img_norm_cfg,
size_divisor=None,
flip_ratio=0,
with_mask=False,
with_label=False,
test_mode=True,
resize_keep_ratio=False),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotations/instances_val2017.json',
img_prefix=data_root + 'val2017/',
img_scale=(300, 300),
img_norm_cfg=img_norm_cfg,
size_divisor=None,
flip_ratio=0,
with_mask=False,
with_label=False,
test_mode=True,
resize_keep_ratio=False))
# optimizer
optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)
optimizer_config = dict()
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=1.0 / 3,
step=[16, 22])
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
# runtime settings
total_epochs = 24
dist_params = dict(backend='nccl')
log_level = 'INFO'
work_dir = './work_dirs/ssd300_coco'
load_from = None
resume_from = None
workflow = [('train', 1)]