Forked from
nikhil_rayaprolu / food-round2
14 commits behind the upstream repository.
-
nikhil_rayaprolu authorednikhil_rayaprolu authored
analyze_logs.py 6.14 KiB
import argparse
import json
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
def cal_train_time(log_dicts, args):
for i, log_dict in enumerate(log_dicts):
print('{}Analyze train time of {}{}'.format('-' * 5, args.json_logs[i],
'-' * 5))
all_times = []
for epoch in log_dict.keys():
if args.include_outliers:
all_times.append(log_dict[epoch]['time'])
else:
all_times.append(log_dict[epoch]['time'][1:])
all_times = np.array(all_times)
epoch_ave_time = all_times.mean(-1)
slowest_epoch = epoch_ave_time.argmax()
fastest_epoch = epoch_ave_time.argmin()
std_over_epoch = epoch_ave_time.std()
print('slowest epoch {}, average time is {:.4f}'.format(
slowest_epoch + 1, epoch_ave_time[slowest_epoch]))
print('fastest epoch {}, average time is {:.4f}'.format(
fastest_epoch + 1, epoch_ave_time[fastest_epoch]))
print('time std over epochs is {:.4f}'.format(std_over_epoch))
print('average iter time: {:.4f} s/iter'.format(np.mean(all_times)))
print()
def plot_curve(log_dicts, args):
if args['backend'] is not None:
plt.switch_backend(args['backend'])
# if legend is None, use {filename}_{key} as legend
legend = args['legend']
if legend is None:
legend = []
for json_log in args['json_logs']:
for metric in args['keys']:
legend.append('{}_{}'.format(json_log, metric))
assert len(legend) == (len(args['json_logs']) * len(args['keys']))
metrics = args['keys']
num_metrics = len(metrics)
for i, log_dict in enumerate(log_dicts):
epochs = list(log_dict.keys())
for j, metric in enumerate(metrics):
print('plot curve of {}, metric is {}'.format(
args['json_logs'][i], metric))
if metric not in log_dict[epochs[0]]:
raise KeyError('{} does not contain metric {}'.format(
args['json_logs'][i], metric))
if 'mAP' in metric:
xs = np.arange(1, max(epochs) + 1)
ys = []
for epoch in epochs:
ys += log_dict[epoch][metric]
ax = plt.gca()
ax.set_xticks(xs)
plt.xlabel('epoch')
plt.plot(xs, ys, label=legend[i * num_metrics + j], marker='o')
else:
xs = []
ys = []
num_iters_per_epoch = log_dict[epochs[0]]['iter'][-1]
for epoch in epochs:
iters = log_dict[epoch]['iter']
if log_dict[epoch]['mode'][-1] == 'val':
iters = iters[:-1]
xs.append(
np.array(iters) + (epoch - 1) * num_iters_per_epoch)
ys.append(np.array(log_dict[epoch][metric][:len(iters)]))
xs = np.concatenate(xs)
ys = np.concatenate(ys)
plt.xlabel('iter')
plt.plot(
xs, ys, label=legend[i * num_metrics + j], linewidth=0.5)
plt.legend()
if args['title'] is not None:
plt.title(args['title'])
if args['out'] is None:
plt.show()
else:
print('save curve to: {}'.format(args['out']))
plt.savefig(args['out'])
plt.cla()
def add_plot_parser(subparsers):
parser_plt = subparsers.add_parser(
'plot_curve', help='parser for plotting curves')
parser_plt.add_argument(
'json_logs',
type=str,
nargs='+',
help='path of train log in json format')
parser_plt.add_argument(
'--keys',
type=str,
nargs='+',
default=['bbox_mAP'],
help='the metric that you want to plot')
parser_plt.add_argument('--title', type=str, help='title of figure')
parser_plt.add_argument(
'--legend',
type=str,
nargs='+',
default=None,
help='legend of each plot')
parser_plt.add_argument(
'--backend', type=str, default=None, help='backend of plt')
parser_plt.add_argument(
'--style', type=str, default='dark', help='style of plt')
parser_plt.add_argument('--out', type=str, default=None)
def add_time_parser(subparsers):
parser_time = subparsers.add_parser(
'cal_train_time',
help='parser for computing the average time per training iteration')
parser_time.add_argument(
'json_logs',
type=str,
nargs='+',
help='path of train log in json format')
parser_time.add_argument(
'--include-outliers',
action='store_true',
help='include the first value of every epoch when computing '
'the average time')
def parse_args():
parser = argparse.ArgumentParser(description='Analyze Json Log')
# currently only support plot curve and calculate average train time
subparsers = parser.add_subparsers(dest='task', help='task parser')
add_plot_parser(subparsers)
add_time_parser(subparsers)
args = parser.parse_args()
return args
def load_json_logs(json_logs):
# load and convert json_logs to log_dict, key is epoch, value is a sub dict
# keys of sub dict is different metrics, e.g. memory, bbox_mAP
# value of sub dict is a list of corresponding values of all iterations
log_dicts = [dict() for _ in json_logs]
for json_log, log_dict in zip(json_logs, log_dicts):
with open(json_log, 'r') as log_file:
for l in log_file:
log = json.loads(l.strip())
epoch = log.pop('epoch')
if epoch not in log_dict:
log_dict[epoch] = defaultdict(list)
for k, v in log.items():
log_dict[epoch][k].append(v)
return log_dicts
def main():
args = parse_args()
json_logs = args.json_logs
for json_log in json_logs:
assert json_log.endswith('.json')
log_dicts = load_json_logs(json_logs)
eval(args.task)(log_dicts, args)
if __name__ == '__main__':
main()