Forked from
nikhil_rayaprolu / food-round2
535 commits behind the upstream repository.
train.py 3.17 KiB
from __future__ import division
import argparse
import copy
from mmcv import Config
from mmcv.runner import obj_from_dict
from mmdet import datasets, __version__
from mmdet.datasets import ConcatDataset
from mmdet.apis import (train_detector, init_dist, get_root_logger,
set_random_seed)
from mmdet.models import build_detector
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work_dir', help='the dir to save logs and models')
parser.add_argument(
'--validate',
action='store_true',
help='whether to evaluate the checkpoint during training')
parser.add_argument(
'--gpus',
type=int,
default=1,
help='number of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
return args
def get_train_dataset(cfg):
if isinstance(cfg.data.train['ann_file'], list) or isinstance(cfg.data.train['ann_file'], tuple):
ann_files = cfg.data.train['ann_file']
train_datasets = []
for ann_file in ann_files:
data_info = copy.deepcopy(cfg.data.train)
data_info['ann_file'] = ann_file
train_dset = obj_from_dict(data_info, datasets)
train_datasets.append(train_dset)
if len(train_datasets) > 1:
train_dataset = ConcatDataset(train_datasets)
else:
train_dataset = train_datasets[0]
else:
train_dataset = obj_from_dict(cfg.data.train, datasets)
return train_dataset
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# update configs according to CLI args
if args.work_dir is not None:
cfg.work_dir = args.work_dir
cfg.gpus = args.gpus
if cfg.checkpoint_config is not None:
# save mmdet version in checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__, config=cfg.text)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
train_dataset = get_train_dataset(cfg)
train_detector(
model,
train_dataset,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
if __name__ == '__main__':
main()