Forked from
nikhil_rayaprolu / food-round2
639 commits behind the upstream repository.
inference.py 1.54 KiB
import mmcv
import numpy as np
import torch
from mmdet.datasets import to_tensor
from mmdet.datasets.transforms import ImageTransform
from mmdet.core import get_classes
def _prepare_data(img, img_transform, cfg, device):
ori_shape = img.shape
img, img_shape, pad_shape, scale_factor = img_transform(
img, scale=cfg.data.test.img_scale)
img = to_tensor(img).to(device).unsqueeze(0)
img_meta = [
dict(
ori_shape=ori_shape,
img_shape=img_shape,
pad_shape=pad_shape,
scale_factor=scale_factor,
flip=False)
]
return dict(img=[img], img_meta=[img_meta])
def inference_detector(model, imgs, cfg, device='cuda:0'):
imgs = imgs if isinstance(imgs, list) else [imgs]
img_transform = ImageTransform(
size_divisor=cfg.data.test.size_divisor, **cfg.img_norm_cfg)
model = model.to(device)
model.eval()
for img in imgs:
img = mmcv.imread(img)
data = _prepare_data(img, img_transform, cfg, device)
with torch.no_grad():
result = model(return_loss=False, rescale=True, **data)
yield result
def show_result(img, result, dataset='coco', score_thr=0.3):
class_names = get_classes(dataset)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(result)
]
labels = np.concatenate(labels)
bboxes = np.vstack(result)
mmcv.imshow_det_bboxes(
img.copy(),
bboxes,
labels,
class_names=class_names,
score_thr=score_thr)