Skip to content
Snippets Groups Projects
Commit fed7fe6a authored by iggotsul's avatar iggotsul
Browse files

new_predict

parent 6e85a728
No related branches found
Tags submission-test-22
No related merge requests found
File added
File added
{
"challenge_id" : "food-recognition-benchmark-2022",
"authors" : ["gotsulyak"],
"description" : "Food Recognition Benchmark Submission",
"license" : "MIT",
"challenge_id": "food-recognition-benchmark-2022",
"authors": [
"gotsulyak"
],
"description": "Food Recognition Benchmark Submission",
"license": "MIT",
"gpu": true,
"debug": true
}
"debug": true,
"model_path": "models/epoch_20.pth",
"model_type": "mmdetection",
"model_config_file": "configs/solo.py"
}
\ No newline at end of file
source diff could not be displayed: it is too large. Options to address this: view the blob.
File added
File added
This diff is collapsed.
#!/usr/bin/env python
#
# This file uses Detectron2 for instance segmentation.
# It is one of the official baselines for the Food Recognition benchmark 2022 challenge.
#
# NOTE: Detectron2 needs the model and **its** aicrowd.json file to be submitted along with your code.
#
# Making submission using Detectron2:
# 1. Copy the aicrowd_detectron2.json from utils to home directory:
# #> cp utils/aicrowd_detectron2_example.json aicrowd.json
# 2. Change the model in `predict.py` to Detectron2Predictor.
# 3. Download the pre-trained model from google drive into the folder `./models` using:
# #> mkdir models
# #> cd models
# #> pip install gdown
# ## To download model trained with "COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml" architecture and score of 0.03 on leaderboard
# #> gdown --id 1ylaOzaI6qBfZbICA844uD74dKxLwcd0K --output model_final_mrcnn_x101.pth
# ## Next line will download "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml" achitecture and score of 0.08
# #> gdown --id 1p5babyX6H80Rt8P8O2ts4g7SJihN2KtV --output model_final_mrcnn_resnet50.pth
# 3. Submit your code using git-lfs
# #> git lfs install
# #> git lfs track "*.pth"
# #> git add .gitattributes
# #> git add models
#
import os
import json
import glob
from PIL import Image
import importlib
import numpy as np
import cv2
import torch
import traceback
import pickle
import shutil
import glob
import tempfile
import time
import mmcv
import torch.distributed as dist
from mmcv.image import tensor2imgs
from mmdet.core import encode_mask_results
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint, wrap_fp16_model
from mmdet.apis import init_detector, inference_detector
from mmdet.apis import multi_gpu_test
from mmdet.datasets import build_dataloader, build_dataset, replace_ImageToTensor
from mmdet.models import build_detector
import pycocotools.mask as mask_util
from utils.mmdet_inference import inference
from evaluator.food_challenge import FoodChallengePredictor
"""
Expected ENVIRONMENT Variables
* AICROWD_TEST_IMAGES_PATH : abs path to folder containing all the test images
* AICROWD_PREDICTIONS_OUTPUT_PATH : path where you are supposed to write the output predictions.json
"""
class MMDetectionPredictor(FoodChallengePredictor):
"""
PARTICIPANT_TODO:
You can do any preprocessing required for your codebase here like loading up models into memory, etc.
"""
def prediction_setup(self):
# self.PADDING = 50
# self.SEGMENTATION_LENGTH = 10
# self.MAX_NUMBER_OF_ANNOTATIONS = 10
# set the config parameters, including the architecture which was previously used
self.cfg_name, self.checkpoint_name = self.get_mmdetection_config()
self.cfg = Config.fromfile(self.cfg_name)
# self.test_img_path = os.getenv("AICROWD_TEST_IMAGES_PATH", os.getcwd() + "/data/images/")
self.test_predictions_file = self.create_test_predictions(self.test_data_path)
if self.cfg.get("cudnn_benchmark", False):
torch.backends.cudnn.benchmark = True
self.cfg.data.samples_per_gpu = 1
self.cfg.data.workers_per_gpu = 2
self.cfg.model.pretrained = None
self.cfg.data.test.test_mode = True
self.cfg.data.test.ann_file = self.test_predictions_file.name
self.cfg.data.test.img_prefix = self.test_data_path
self.model = init_detector(self.cfg_name, self.checkpoint_name, device="cuda:0")
fp16_cfg = self.cfg.get("fp16", None)
if fp16_cfg is not None:
wrap_fp16_model(self.model)
# Load annotations
with open(self.test_predictions_file.name) as f:
self.annotations = json.loads(f.read())
self.cat_ids = [category["id"] for category in self.annotations["categories"]]
self.model.CLASSES = [
category["name"] for category in self.annotations["categories"]
]
"""
PARTICIPANT_TODO:
During the evaluation all image file path will be provided one by one.
NOTE: In case you want to load your model, please do so in `predict_setup` function.
"""
def prediction(self, image_path):
print("Generating for", image_path)
# read the image
result = inference(self.model, image_path)
# RLE Encode the masks
result = (result[0], encode_mask_results(result[1]))
result = self.segm2jsonformat(result, image_path)
return result
def xyxy2xywh(self, bbox):
_bbox = bbox.tolist()
return [
_bbox[0],
_bbox[1],
_bbox[2] - _bbox[0] + 1,
_bbox[3] - _bbox[1] + 1,
]
def segm2jsonformat(self, result, image_path):
segm_json_results = []
img_id = int(os.path.basename(image_path).split(".")[0])
det, seg = result
# print("image:",img_id)
for label in range(len(det)):
bboxes = det[label]
# print(type(bboxes))
segms = seg[label]
mask_score = [bbox[4] for bbox in bboxes]
for i in range(len(bboxes)):
data = dict()
data["image_id"] = img_id
data["bbox"] = self.xyxy2xywh(bboxes[i])
data["score"] = float(mask_score[i])
data["category_id"] = self.cat_ids[label]
if isinstance(segms[i]["counts"], bytes):
segms[i]["counts"] = segms[i]["counts"].decode()
data["segmentation"] = segms[i]
segm_json_results.append(data)
return segm_json_results
def create_test_predictions(self, images_path):
test_predictions_file = tempfile.NamedTemporaryFile(mode="w+", suffix=".json")
annotations = {"categories": [], "info": {}, "images": []}
for item in glob.glob(images_path + "/*.jpg"):
image_dict = dict()
img = mmcv.imread(item)
height, width, __ = img.shape
id = int(os.path.basename(item).split(".")[0])
image_dict["image_id"] = id
image_dict["file_name"] = os.path.basename(item)
image_dict["width"] = width
image_dict["height"] = height
annotations["images"].append(image_dict)
annotations["categories"] = json.loads(open("utils/classes.json").read())
json.dump(annotations, open(test_predictions_file.name, "w"))
return test_predictions_file
def get_mmdetection_config(self):
with open("aicrowd.json") as f:
content = json.load(f)
config_fname = content["model_config_file"]
checkpoint_fname = content["model_path"]
# config = Config.fromfile(config_fname)
return (config_fname, checkpoint_fname)
if __name__ == "__main__":
submission = MMDetectionPredictor()
submission.run()
print("Successfully generated predictions!")
This diff is collapsed.
#!/bin/bash
python predict.py --cfg ./configs/solo.py --model ./models/epoch_20.pth
python predict.py
#echo `tree /home`
#echo -e "\n" `export`
......
File added
This diff is collapsed.
import mmcv
import numpy as np
import torch
from mmcv.ops import RoIPool
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
from mmdet.core import get_classes
from mmdet.datasets import replace_ImageToTensor
from mmdet.datasets.pipelines import Compose
from mmdet.models import build_detector
# import time
def inference(model, imgs):
# start = time.process_time()
imgs = [imgs]
cfg = model.cfg
device = "cuda:0"
if isinstance(imgs[0], np.ndarray):
cfg = cfg.copy()
# set loading pipeline type
cfg.data.test.pipeline[0].type = "LoadImageFromWebcam"
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
test_pipeline = Compose(cfg.data.test.pipeline)
datas = []
data = dict(img_info=dict(filename=imgs[0]), img_prefix=None)
# build the data pipeline
data = test_pipeline(data)
datas.append(data)
data = collate(datas, samples_per_gpu=len(imgs))
# just get the actual data from DataContainer
data["img_metas"] = [img_metas.data[0] for img_metas in data["img_metas"]]
data["img"] = [img.data[0] for img in data["img"]]
# scatter to specified GPU
data = scatter(data, [device])[0]
# forward the model
with torch.no_grad():
results = model(return_loss=False, rescale=True, **data)
# your code here
# print(time.process_time() - start)
return results[0]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment