Skip to content
Snippets Groups Projects
Commit d6c85eda authored by MasterScrat's avatar MasterScrat
Browse files

Prevent creation of new environment before the previous one is done, added extra logging

parent c4c041b3
No related branches found
No related tags found
2 merge requests!309Prevent creation of new environment before the previous one is done,!307Prevent creation of new environment before the previous one is done
Pipeline #4861 passed
......@@ -43,14 +43,14 @@ m.patch()
# CONSTANTS
########################################################
INTIAL_PLANNING_TIMEOUT = int(os.getenv(
"FLATLAND_INITIAL_PLANNING_TIMEOUT",
5 * 60)) # 5 mins
"FLATLAND_INITIAL_PLANNING_TIMEOUT",
5 * 60)) # 5 mins
PER_STEP_TIMEOUT = int(os.getenv(
"FLATLAND_PER_STEP_TIMEOUT",
5)) # 5 seconds
"FLATLAND_PER_STEP_TIMEOUT",
5)) # 5 seconds
DEFAULT_COMMAND_TIMEOUT = int(os.getenv(
"FLATLAND_DEFAULT_COMMAND_TIMEOUT",
1 * 60)) # 1 min
"FLATLAND_DEFAULT_COMMAND_TIMEOUT",
1 * 60)) # 1 min
# This applies to the rest of the commands
......@@ -150,6 +150,7 @@ class FlatlandRemoteEvaluationService:
self.env = False
self.env_renderer = False
self.reward = 0
self.simulation_done = True
self.simulation_count = -1
self.simulation_env_file_paths = []
self.simulation_rewards = []
......@@ -249,7 +250,7 @@ class FlatlandRemoteEvaluationService:
) for x in env_paths])
return env_paths
def instantiate_evaluation_metadata(self):
"""
This instantiates a pandas dataframe to record
......@@ -261,9 +262,9 @@ class FlatlandRemoteEvaluationService:
"""
self.evaluation_metadata_df = None
metadata_file_path = os.path.join(
self.test_env_folder,
"metadata.csv"
)
self.test_env_folder,
"metadata.csv"
)
if os.path.exists(metadata_file_path):
self.evaluation_metadata_df = pd.read_csv(metadata_file_path)
self.evaluation_metadata_df["filename"] = \
......@@ -293,7 +294,7 @@ class FlatlandRemoteEvaluationService:
for the **previous** episode in the metadata_df if it exists.
"""
if self.evaluation_metadata_df is not None and len(self.simulation_env_file_paths) > 0:
last_simulation_env_file_path = self.simulation_env_file_paths[-1]
_row = self.evaluation_metadata_df.loc[
......@@ -373,7 +374,7 @@ class FlatlandRemoteEvaluationService:
packed message, and consider the timeouts, etc when trying to
fetch a new command.
"""
COMMAND_TIMEOUT = DEFAULT_COMMAND_TIMEOUT
"""
Handle case specific timeouts :
......@@ -402,7 +403,7 @@ class FlatlandRemoteEvaluationService:
If the user has already done an env_submit call, then the timeout
can be an arbitrarily large number.
"""
COMMAND_TIMEOUT = 10**6
COMMAND_TIMEOUT = 10 ** 6
@timeout_decorator.timeout(
COMMAND_TIMEOUT,
......@@ -486,7 +487,14 @@ class FlatlandRemoteEvaluationService:
Handles a ENV_CREATE command from the client
TODO: Add a high level summary of everything thats happening here.
"""
if not self.simulation_done:
# trying to reset a simulation before finishing the previous one
_command_response = self._error_template("CAN'T CREATE NEW ENV BEFORE PREVIOUS IS DONE")
self.send_response(_command_response, command)
raise Exception(_command_response['payload'])
self.simulation_count += 1
self.simulation_done = False
if self.simulation_count < len(self.env_file_paths):
"""
There are still test envs left that are yet to be evaluated
......@@ -622,6 +630,8 @@ class FlatlandRemoteEvaluationService:
)
if done["__all__"]:
self.simulation_done = True
# Compute percentage complete
complete = 0
for i_agent in range(self.env.get_num_agents()):
......@@ -631,6 +641,12 @@ class FlatlandRemoteEvaluationService:
percentage_complete = complete * 1.0 / self.env.get_num_agents()
self.simulation_percentage_complete[-1] = percentage_complete
print("Evaluation finished in {} timesteps. Percentage agents done: {:.3f}. Normalized reward: {:.3f}.".format(
self.simulation_steps[-1],
self.simulation_percentage_complete[-1],
self.simulation_rewards_normalized[-1]
))
# Record Frame
if self.visualize:
"""
......@@ -673,10 +689,10 @@ class FlatlandRemoteEvaluationService:
min_key = "{}_min".format(metric_name)
max_key = "{}_max".format(metric_name)
print("\t - {}\t => min: {} || mean: {} || max: {}".format(
metric_name,
self.stats[min_key],
self.stats[mean_key],
self.stats[max_key]))
metric_name,
self.stats[min_key],
self.stats[mean_key],
self.stats[max_key]))
print("=" * 100)
# Register simulation time of the last episode
......@@ -732,7 +748,7 @@ class FlatlandRemoteEvaluationService:
if self.result_output_path:
self.evaluation_metadata_df.to_csv(self.result_output_path)
print("Wrote output results to : {}".format(self.result_output_path))
# Upload the metadata file to S3
if aicrowd_helpers.is_grading() and aicrowd_helpers.is_aws_configured():
metadata_s3_key = aicrowd_helpers.upload_to_s3(
......@@ -848,9 +864,9 @@ class FlatlandRemoteEvaluationService:
print("Self.Reward : ", self.reward)
print("Current Simulation : ", self.simulation_count)
if self.env_file_paths and \
self.simulation_count < len(self.env_file_paths):
self.simulation_count < len(self.env_file_paths):
print("Current Env Path : ",
self.env_file_paths[self.simulation_count])
self.env_file_paths[self.simulation_count])
try:
if command['type'] == messages.FLATLAND_RL.PING:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment