Skip to content
Snippets Groups Projects
Commit da79652a authored by MasterScrat's avatar MasterScrat
Browse files

Updated README

parent acb3cda3
No related branches found
No related tags found
No related merge requests found
...@@ -5,22 +5,28 @@ This starter kit contains 2 example policies to get started with this challenge: ...@@ -5,22 +5,28 @@ This starter kit contains 2 example policies to get started with this challenge:
- a simple single-agent DQN method - a simple single-agent DQN method
- a more robust multi-agent DQN method that you can submit out of the box to the challenge 🚀 - a more robust multi-agent DQN method that you can submit out of the box to the challenge 🚀
- **[🔗 Train the single-agent DQN policy](https://flatland.aicrowd.com/getting-started/rl/single-agent.html)** **🔗 [Train the single-agent DQN policy](https://flatland.aicrowd.com/getting-started/rl/single-agent.html)**
- **[🔗 Train the multi-agent DQN policy](https://flatland.aicrowd.com/getting-started/rl/multi-agent.html)**
- **[🔗 Submit a trained multi-agent policy](https://flatland.aicrowd.com/getting-started/rl/single-agent.html)** **🔗 [Train the multi-agent DQN policy](https://flatland.aicrowd.com/getting-started/rl/multi-agent.html)**
**🔗 [Submit a trained multi-agent policy](https://flatland.aicrowd.com/getting-started/rl/first-submission.html)**
The single-agent example is meant as a minimal example of how to use DQN. The multi-agent is a better starting point to create your own solution. The single-agent example is meant as a minimal example of how to use DQN. The multi-agent is a better starting point to create your own solution.
You can fully train the multi-agent policy in Colab for free! [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1GbPwZNQU7KJIJtilcGBTtpOAD3EabAzJ?usp=sharing) You can fully train the multi-agent policy in Colab for free! [![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1GbPwZNQU7KJIJtilcGBTtpOAD3EabAzJ?usp=sharing)
Sample training usage
---
Train the multi-agent policy for 150 episodes:
```bash ```bash
# Train the multi-agent policy for 150 episodes
python reinforcement_learning/multi_agent_training.py -n 150 python reinforcement_learning/multi_agent_training.py -n 150
``` ```
The multi-agent policy training can be tuned using command-line arguments: The multi-agent policy training can be tuned using command-line arguments:
```console ```console
usage: multi_agent_training.py [-h] [-n N_EPISODES] [-t TRAINING_ENV_CONFIG] usage: multi_agent_training.py [-h] [-n N_EPISODES] [-t TRAINING_ENV_CONFIG]
[-e EVALUATION_ENV_CONFIG] [-e EVALUATION_ENV_CONFIG]
[--n_evaluation_episodes N_EVALUATION_EPISODES] [--n_evaluation_episodes N_EVALUATION_EPISODES]
...@@ -79,7 +85,7 @@ optional arguments: ...@@ -79,7 +85,7 @@ optional arguments:
--render RENDER render 1 episode in 100 --render RENDER render 1 episode in 100
``` ```
[**📈 Results using the multi-agent example with various hyper-parameters**](https://app.wandb.ai/masterscrat/flatland-examples-reinforcement_learning/reports/Flatland-Examples--VmlldzoxNDI2MTA) [**📈 Performance with various hyper-parameters**](https://app.wandb.ai/masterscrat/flatland-examples-reinforcement_learning/reports/Flatland-Examples--VmlldzoxNDI2MTA)
[![](https://i.imgur.com/Lqrq5GE.png)](https://app.wandb.ai/masterscrat/flatland-examples-reinforcement_learning/reports/Flatland-Examples--VmlldzoxNDI2MTA) [![](https://i.imgur.com/Lqrq5GE.png)](https://app.wandb.ai/masterscrat/flatland-examples-reinforcement_learning/reports/Flatland-Examples--VmlldzoxNDI2MTA)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment