Skip to content
Snippets Groups Projects
Commit d7e225d6 authored by Erik Nygren's avatar Erik Nygren
Browse files

minor updates

parent bb778417
No related branches found
No related tags found
No related merge requests found
......@@ -3,7 +3,7 @@ from collections import deque
import numpy as np
import torch
from flatland.envs.generators import complex_rail_generator
from flatland.envs.generators import complex_rail_generator, rail_from_file
from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv
......@@ -14,16 +14,17 @@ import torch_training.Nets
from torch_training.dueling_double_dqn import Agent
from utils.observation_utils import norm_obs_clip, split_tree
random.seed(1)
np.random.seed(1)
"""
file_name = "./railway/complex_scene.pkl"
random.seed(3)
np.random.seed(2)
file_name = "./railway/navigate_and_avoid.pkl"
env = RailEnv(width=10,
height=20,
rail_generator=rail_from_file(file_name),
obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()))
x_dim = env.width
y_dim = env.height
"""
x_dim = np.random.randint(8, 20)
......@@ -40,7 +41,7 @@ env = RailEnv(width=x_dim,
obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()),
number_of_agents=n_agents)
env.reset(True, True)
"""
tree_depth = 3
observation_helper = TreeObsForRailEnv(max_depth=tree_depth, predictor=ShortestPathPredictorForRailEnv())
env_renderer = RenderTool(env, gl="PILSVG", )
......@@ -52,7 +53,7 @@ for i in range(tree_depth + 1):
state_size = num_features_per_node * nr_nodes
action_size = 5
n_trials = 100
n_trials = 5
observation_radius = 10
max_steps = int(3 * (env.height + env.width))
eps = 1.
......@@ -69,7 +70,7 @@ action_prob = [0] * action_size
agent_obs = [None] * env.get_num_agents()
agent_next_obs = [None] * env.get_num_agents()
agent = Agent(state_size, action_size, "FC", 0)
with path(torch_training.Nets, "avoid_checkpoint49700.pth") as file_in:
with path(torch_training.Nets, "avoid_checkpoint53400.pth") as file_in:
agent.qnetwork_local.load_state_dict(torch.load(file_in))
record_images = False
......@@ -95,7 +96,7 @@ for trials in range(1, n_trials + 1):
env_renderer.render_env(show=True, show_observations=False, show_predictions=True)
if record_images:
env_renderer.gl.saveImage("./Images/flatland_frame_{:04d}.bmp".format(frame_step))
env_renderer.gl.save_image("./Images/Avoiding/flatland_frame_{:04d}.bmp".format(frame_step))
frame_step += 1
# Action
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment