Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
baselines
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Flatland
baselines
Commits
cebde3d8
Commit
cebde3d8
authored
5 years ago
by
Erik Nygren
Browse files
Options
Downloads
Patches
Plain Diff
updated training navigation and render_agent_behavior
parent
12e52a2e
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
torch_training/render_agent_behavior.py
+23
-45
23 additions, 45 deletions
torch_training/render_agent_behavior.py
torch_training/training_navigation.py
+26
-37
26 additions, 37 deletions
torch_training/training_navigation.py
with
49 additions
and
82 deletions
torch_training/render_agent_behavior.py
+
23
−
45
View file @
cebde3d8
...
...
@@ -13,7 +13,7 @@ from flatland.envs.rail_generators import sparse_rail_generator
from
flatland.envs.schedule_generators
import
sparse_schedule_generator
from
flatland.utils.rendertools
import
RenderTool
from
torch_training.dueling_double_dqn
import
Agent
from
utils.observation_utils
import
norm
_obs_clip
,
split_tree
from
utils.observation_utils
import
norm
alize_observation
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
...
...
@@ -77,9 +77,12 @@ env.reset(True, True)
observation_helper
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
())
env_renderer
=
RenderTool
(
env
,
gl
=
"
PILSVG
"
,
)
num_features_per_node
=
env
.
obs_builder
.
observation_dim
handle
=
env
.
get_agent_handles
()
features_per_node
=
9
state_size
=
features_per_node
*
85
*
2
tree_depth
=
2
nr_nodes
=
0
for
i
in
range
(
tree_depth
+
1
):
nr_nodes
+=
np
.
power
(
4
,
i
)
state_size
=
num_features_per_node
*
nr_nodes
action_size
=
5
# We set the number of episodes we would like to train on
...
...
@@ -100,7 +103,7 @@ action_prob = [0] * action_size
agent_obs
=
[
None
]
*
env
.
get_num_agents
()
agent_next_obs
=
[
None
]
*
env
.
get_num_agents
()
agent
=
Agent
(
state_size
,
action_size
,
"
FC
"
,
0
)
with
path
(
torch_training
.
Nets
,
"
av
oid
_checkpoint
497
00.pth
"
)
as
file_in
:
with
path
(
torch_training
.
Nets
,
"
n
av
igator
_checkpoint
1
00.pth
"
)
as
file_in
:
agent
.
qnetwork_local
.
load_state_dict
(
torch
.
load
(
file_in
))
record_images
=
False
...
...
@@ -110,57 +113,32 @@ for trials in range(1, n_trials + 1):
# Reset environment
obs
=
env
.
reset
(
True
,
True
)
env_renderer
.
set_new_rail
()
obs_original
=
obs
.
copy
()
final_obs
=
obs
.
copy
()
final_obs_next
=
obs
.
copy
()
for
a
in
range
(
env
.
get_num_agents
()):
data
,
distance
,
agent_data
=
split_tree
(
tree
=
np
.
array
(
obs
[
a
]),
num_features_per_node
=
num_features_per_node
,
current_depth
=
0
)
data
=
norm_obs_clip
(
data
)
distance
=
norm_obs_clip
(
distance
)
agent_data
=
np
.
clip
(
agent_data
,
-
1
,
1
)
obs
[
a
]
=
np
.
concatenate
((
np
.
concatenate
((
data
,
distance
)),
agent_data
))
agent_data
=
env
.
agents
[
a
]
speed
=
1
# np.random.randint(1,5)
agent_data
.
speed_data
[
'
speed
'
]
=
1.
/
speed
for
i
in
range
(
2
):
time_obs
.
append
(
obs
)
# env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5)
env_renderer
.
reset
()
# Build agent specific observations
for
a
in
range
(
env
.
get_num_agents
()):
agent_obs
[
a
]
=
np
.
concatenate
((
time_obs
[
0
][
a
],
time_obs
[
1
][
a
]))
agent_obs
[
a
]
=
agent_obs
[
a
]
=
normalize_observation
(
obs
[
a
],
observation_radius
=
10
)
# Reset score and done
score
=
0
env_done
=
0
# Run episode
for
step
in
range
(
max_steps
):
env_renderer
.
render_env
(
show
=
True
,
show_observations
=
False
,
show_predictions
=
True
)
if
record_images
:
env_renderer
.
gl
.
saveImage
(
"
./Images/flatland_frame_{:04d}.bmp
"
.
format
(
frame_step
))
frame_step
+=
1
# Action
for
a
in
range
(
env
.
get_num_agents
()):
# action = agent.act(np.array(obs[a]), eps=eps)
action
=
agent
.
act
(
agent_obs
[
a
],
eps
=
0
)
action_prob
[
action
]
+=
1
action_dict
.
update
({
a
:
action
})
# Environment step
obs
,
all_rewards
,
done
,
_
=
env
.
step
(
action_dict
)
next_obs
,
all_rewards
,
done
,
_
=
env
.
step
(
action_dict
)
# print(all_rewards,action)
obs_original
=
next_obs
.
copy
()
env_renderer
.
render_env
(
show
=
True
,
show_predictions
=
False
,
show_observations
=
False
)
# Build agent specific observations and normalize
for
a
in
range
(
env
.
get_num_agents
()):
data
,
distance
,
agent_data
=
split_tree
(
tree
=
np
.
array
(
next_obs
[
a
]),
num_features_per_node
=
num_features_per_node
,
current_depth
=
0
)
data
=
norm_obs_clip
(
data
)
distance
=
norm_obs_clip
(
distance
)
agent_data
=
np
.
clip
(
agent_data
,
-
1
,
1
)
next_obs
[
a
]
=
np
.
concatenate
((
np
.
concatenate
((
data
,
distance
)),
agent_data
))
time_obs
.
append
(
next_obs
)
for
a
in
range
(
env
.
get_num_agents
()):
agent_next_obs
[
a
]
=
np
.
concatenate
((
time_obs
[
0
][
a
],
time_obs
[
1
][
a
]))
agent_obs
=
agent_next_obs
.
copy
()
agent_obs
[
a
]
=
normalize_observation
(
obs
[
a
],
observation_radius
=
10
)
if
done
[
'
__all__
'
]:
break
This diff is collapsed.
Click to expand it.
torch_training/training_navigation.py
+
26
−
37
View file @
cebde3d8
...
...
@@ -13,7 +13,7 @@ from flatland.envs.rail_env import RailEnv
from
flatland.envs.rail_generators
import
sparse_rail_generator
from
flatland.envs.schedule_generators
import
sparse_schedule_generator
from
flatland.utils.rendertools
import
RenderTool
from
utils.observation_utils
import
norm
_obs_clip
,
split_tree
from
utils.observation_utils
import
norm
alize_observation
def
main
(
argv
):
...
...
@@ -120,74 +120,63 @@ def main(argv):
# Reset environment
obs
=
env
.
reset
(
True
,
True
)
if
not
Training
:
env_renderer
.
set_new_rail
()
# Split the observation tree into its parts and normalize the observation using the utility functions.
# Build agent specific local observation
final_obs
=
agent_obs
.
copy
()
final_obs_next
=
agent_next_obs
.
copy
()
# Build agent specific observations
for
a
in
range
(
env
.
get_num_agents
()):
rail_data
,
distance_data
,
agent_data
=
split_tree
(
tree
=
np
.
array
(
obs
[
a
]),
num_features_per_node
=
num_features_per_node
,
current_depth
=
0
)
rail_data
=
norm_obs_clip
(
rail_data
)
distance_data
=
norm_obs_clip
(
distance_data
)
agent_data
=
np
.
clip
(
agent_data
,
-
1
,
1
)
agent_obs
[
a
]
=
np
.
concatenate
((
np
.
concatenate
((
rail_data
,
distance_data
)),
agent_data
))
agent_obs
[
a
]
=
agent_obs
[
a
]
=
normalize_observation
(
obs
[
a
],
observation_radius
=
10
)
# Reset score and done
score
=
0
env_done
=
0
# Run episode
for
step
in
range
(
max_steps
):
# Only render when not triaing
if
not
Training
:
env_renderer
.
render_env
(
show
=
True
,
show_observations
=
True
)
# Chose the actions
# Action
for
a
in
range
(
env
.
get_num_agents
()):
if
not
Training
:
eps
=
0
action
=
agent
.
act
(
agent_obs
[
a
],
eps
=
eps
)
action_dict
.
update
({
a
:
action
})
# Count number of actions takes for statistics
action_prob
[
action
]
+=
1
action_dict
.
update
({
a
:
action
})
# Environment step
next_obs
,
all_rewards
,
done
,
_
=
env
.
step
(
action_dict
)
# Build agent specific observations and normalize
for
a
in
range
(
env
.
get_num_agents
()):
rail_data
,
distance_data
,
agent_data
=
split_tree
(
tree
=
np
.
array
(
next_obs
[
a
]),
num_features_per_node
=
num_features_per_node
,
current_depth
=
0
)
rail_data
=
norm_obs_clip
(
rail_data
)
distance_data
=
norm_obs_clip
(
distance_data
)
agent_data
=
np
.
clip
(
agent_data
,
-
1
,
1
)
agent_next_obs
[
a
]
=
np
.
concatenate
((
np
.
concatenate
((
rail_data
,
distance_data
)),
agent_data
))
agent_next_obs
[
a
]
=
normalize_observation
(
next_obs
[
a
],
observation_radius
=
10
)
# Update replay buffer and train agent
for
a
in
range
(
env
.
get_num_agents
()):
# Remember and train agent
if
Training
:
if
done
[
a
]:
final_obs
[
a
]
=
agent_obs
[
a
].
copy
()
final_obs_next
[
a
]
=
agent_next_obs
[
a
].
copy
()
final_action_dict
.
update
({
a
:
action_dict
[
a
]})
if
not
done
[
a
]:
agent
.
step
(
agent_obs
[
a
],
action_dict
[
a
],
all_rewards
[
a
],
agent_next_obs
[
a
],
done
[
a
])
# Update the current score
score
+=
all_rewards
[
a
]
/
env
.
get_num_agents
()
# Copy observation
agent_obs
=
agent_next_obs
.
copy
()
if
done
[
'
__all__
'
]:
env_done
=
1
for
a
in
range
(
env
.
get_num_agents
()):
agent
.
step
(
final_obs
[
a
],
final_action_dict
[
a
],
all_rewards
[
a
],
final_obs_next
[
a
],
done
[
a
])
break
# Epsilon decay
eps
=
max
(
eps_end
,
eps_decay
*
eps
)
# decrease epsilon
# Store the information about training progress
done_window
.
append
(
env_done
)
# Collection information about training
tasks_finished
=
0
for
_idx
in
range
(
env
.
get_num_agents
()):
if
done
[
_idx
]
==
1
:
tasks_finished
+=
1
done_window
.
append
(
tasks_finished
/
env
.
get_num_agents
())
scores_window
.
append
(
score
/
max_steps
)
# save most recent score
scores
.
append
(
np
.
mean
(
scores_window
))
dones_list
.
append
((
np
.
mean
(
done_window
)))
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment