Skip to content
Snippets Groups Projects
Commit c8bd7833 authored by Erik Nygren's avatar Erik Nygren
Browse files

minor updates and new training checkpoints

parent a3fb8a57
No related branches found
No related tags found
No related merge requests found
...@@ -3,7 +3,7 @@ from collections import deque ...@@ -3,7 +3,7 @@ from collections import deque
import numpy as np import numpy as np
import torch import torch
from flatland.envs.generators import complex_rail_generator from flatland.envs.generators import rail_from_file
from flatland.envs.observations import TreeObsForRailEnv from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv from flatland.envs.rail_env import RailEnv
...@@ -16,7 +16,7 @@ from utils.observation_utils import norm_obs_clip, split_tree ...@@ -16,7 +16,7 @@ from utils.observation_utils import norm_obs_clip, split_tree
random.seed(3) random.seed(3)
np.random.seed(2) np.random.seed(2)
"""
file_name = "./railway/flatland.pkl" file_name = "./railway/flatland.pkl"
env = RailEnv(width=10, env = RailEnv(width=10,
height=20, height=20,
...@@ -41,7 +41,7 @@ env = RailEnv(width=x_dim, ...@@ -41,7 +41,7 @@ env = RailEnv(width=x_dim,
obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()), obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()),
number_of_agents=n_agents) number_of_agents=n_agents)
env.reset(True, True) env.reset(True, True)
"""
tree_depth = 3 tree_depth = 3
observation_helper = TreeObsForRailEnv(max_depth=tree_depth, predictor=ShortestPathPredictorForRailEnv()) observation_helper = TreeObsForRailEnv(max_depth=tree_depth, predictor=ShortestPathPredictorForRailEnv())
env_renderer = RenderTool(env, gl="PILSVG", ) env_renderer = RenderTool(env, gl="PILSVG", )
...@@ -81,7 +81,7 @@ for trials in range(1, n_trials + 1): ...@@ -81,7 +81,7 @@ for trials in range(1, n_trials + 1):
# Reset environment # Reset environment
obs = env.reset(True, True) obs = env.reset(True, True)
env_renderer.set_new_rail() env_renderer.reset()
for a in range(env.get_num_agents()): for a in range(env.get_num_agents()):
data, distance, agent_data = split_tree(tree=np.array(obs[a]), num_features_per_node=num_features_per_node, data, distance, agent_data = split_tree(tree=np.array(obs[a]), num_features_per_node=num_features_per_node,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment