Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
baselines
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Flatland
baselines
Commits
7c765f06
Commit
7c765f06
authored
5 years ago
by
Erik Nygren
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' of gitlab.aicrowd.com:flatland/baselines
parents
54224ea3
ccf0dba1
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
torch_training/bla.py
+0
-225
0 additions, 225 deletions
torch_training/bla.py
torch_training/multi_agent_training.py
+2
-13
2 additions, 13 deletions
torch_training/multi_agent_training.py
tox.ini
+1
-2
1 addition, 2 deletions
tox.ini
with
3 additions
and
240 deletions
torch_training/bla.py
deleted
100644 → 0
+
0
−
225
View file @
54224ea3
import
getopt
import
random
import
sys
from
collections
import
deque
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
torch
from
importlib_resources
import
path
import
torch_training.Nets
from
flatland.envs.generators
import
complex_rail_generator
from
flatland.envs.observations
import
TreeObsForRailEnv
from
flatland.envs.predictions
import
ShortestPathPredictorForRailEnv
from
flatland.envs.rail_env
import
RailEnv
from
flatland.utils.rendertools
import
RenderTool
from
torch_training.dueling_double_dqn
import
Agent
from
utils.observation_utils
import
norm_obs_clip
,
split_tree
print
(
"
multi_agent_trainging.py (1)
"
)
def
main
(
argv
):
try
:
opts
,
args
=
getopt
.
getopt
(
argv
,
"
n:
"
,
[
"
n_trials=
"
])
except
getopt
.
GetoptError
:
print
(
'
training_navigation.py -n <n_trials>
'
)
sys
.
exit
(
2
)
for
opt
,
arg
in
opts
:
if
opt
in
(
'
-n
'
,
'
--n_trials
'
):
n_trials
=
int
(
arg
)
print
(
"
main1
"
)
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
"""
env = RailEnv(width=10,
height=20, obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()))
env.load(
"
./railway/complex_scene.pkl
"
)
file_load = True
"""
x_dim
=
np
.
random
.
randint
(
8
,
20
)
y_dim
=
np
.
random
.
randint
(
8
,
20
)
n_agents
=
np
.
random
.
randint
(
3
,
8
)
n_goals
=
n_agents
+
np
.
random
.
randint
(
0
,
3
)
min_dist
=
int
(
0.75
*
min
(
x_dim
,
y_dim
))
print
(
"
main2
"
)
env
=
RailEnv
(
width
=
x_dim
,
height
=
y_dim
,
rail_generator
=
complex_rail_generator
(
nr_start_goal
=
n_goals
,
nr_extra
=
5
,
min_dist
=
min_dist
,
max_dist
=
99999
,
seed
=
0
),
obs_builder_object
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
()),
number_of_agents
=
n_agents
)
env
.
reset
(
True
,
True
)
file_load
=
False
observation_helper
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
())
env_renderer
=
RenderTool
(
env
,
gl
=
"
PILSVG
"
,
)
handle
=
env
.
get_agent_handles
()
features_per_node
=
9
state_size
=
features_per_node
*
85
*
2
action_size
=
5
print
(
"
main3
"
)
# We set the number of episodes we would like to train on
if
'
n_trials
'
not
in
locals
():
n_trials
=
30000
max_steps
=
int
(
3
*
(
env
.
height
+
env
.
width
))
eps
=
1.
eps_end
=
0.005
eps_decay
=
0.9995
action_dict
=
dict
()
final_action_dict
=
dict
()
scores_window
=
deque
(
maxlen
=
100
)
done_window
=
deque
(
maxlen
=
100
)
time_obs
=
deque
(
maxlen
=
2
)
scores
=
[]
dones_list
=
[]
action_prob
=
[
0
]
*
action_size
agent_obs
=
[
None
]
*
env
.
get_num_agents
()
agent_next_obs
=
[
None
]
*
env
.
get_num_agents
()
agent
=
Agent
(
state_size
,
action_size
,
"
FC
"
,
0
)
with
path
(
torch_training
.
Nets
,
"
avoid_checkpoint30000.pth
"
)
as
file_in
:
agent
.
qnetwork_local
.
load_state_dict
(
torch
.
load
(
file_in
))
demo
=
False
record_images
=
False
frame_step
=
0
print
(
"
Going to run training for {} trials...
"
.
format
(
n_trials
))
for
trials
in
range
(
1
,
n_trials
+
1
):
if
trials
%
50
==
0
and
not
demo
:
x_dim
=
np
.
random
.
randint
(
8
,
20
)
y_dim
=
np
.
random
.
randint
(
8
,
20
)
n_agents
=
np
.
random
.
randint
(
3
,
8
)
n_goals
=
n_agents
+
np
.
random
.
randint
(
0
,
3
)
min_dist
=
int
(
0.75
*
min
(
x_dim
,
y_dim
))
env
=
RailEnv
(
width
=
x_dim
,
height
=
y_dim
,
rail_generator
=
complex_rail_generator
(
nr_start_goal
=
n_goals
,
nr_extra
=
5
,
min_dist
=
min_dist
,
max_dist
=
99999
,
seed
=
0
),
obs_builder_object
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
()),
number_of_agents
=
n_agents
)
env
.
reset
(
True
,
True
)
max_steps
=
int
(
3
*
(
env
.
height
+
env
.
width
))
agent_obs
=
[
None
]
*
env
.
get_num_agents
()
agent_next_obs
=
[
None
]
*
env
.
get_num_agents
()
# # Reset environment
# if file_load:
# obs = env.reset(False, False)
# else:
# obs = env.reset(True, True)
# if demo:
# env_renderer.set_new_rail()
# obs_original = obs.copy()
# final_obs = obs.copy()
# final_obs_next = obs.copy()
# for a in range(env.get_num_agents()):
# data, distance, agent_data = split_tree(tree=np.array(obs[a]),
# current_depth=0)
# data = norm_obs_clip(data)
# distance = norm_obs_clip(distance)
# agent_data = np.clip(agent_data, -1, 1)
# obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
# agent_data = env.agents[a]
# speed = 1 # np.random.randint(1,5)
# agent_data.speed_data['speed'] = 1. / speed
#
# for i in range(2):
# time_obs.append(obs)
# # env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5)
# for a in range(env.get_num_agents()):
# agent_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a]))
#
# score = 0
# env_done = 0
# # Run episode
# for step in range(max_steps):
# if demo:
# env_renderer.renderEnv(show=True, show_observations=False)
# # observation_helper.util_print_obs_subtree(obs_original[0])
# if record_images:
# env_renderer.gl.saveImage("./Images/flatland_frame_{:04d}.bmp".format(frame_step))
# frame_step += 1
# # print(step)
# # Action
# for a in range(env.get_num_agents()):
# if demo:
# eps = 0
# # action = agent.act(np.array(obs[a]), eps=eps)
# action = agent.act(agent_obs[a], eps=eps)
# action_prob[action] += 1
# action_dict.update({a: action})
# # Environment step
#
# next_obs, all_rewards, done, _ = env.step(action_dict)
# # print(all_rewards,action)
# obs_original = next_obs.copy()
# for a in range(env.get_num_agents()):
# data, distance, agent_data = split_tree(tree=np.array(next_obs[a]),
# current_depth=0)
# data = norm_obs_clip(data)
# distance = norm_obs_clip(distance)
# agent_data = np.clip(agent_data, -1, 1)
# next_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
# time_obs.append(next_obs)
#
# # Update replay buffer and train agent
# for a in range(env.get_num_agents()):
# agent_next_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a]))
# if done[a]:
# final_obs[a] = agent_obs[a].copy()
# final_obs_next[a] = agent_next_obs[a].copy()
# final_action_dict.update({a: action_dict[a]})
# if not demo and not done[a]:
# agent.step(agent_obs[a], action_dict[a], all_rewards[a], agent_next_obs[a], done[a])
# score += all_rewards[a] / env.get_num_agents()
#
# agent_obs = agent_next_obs.copy()
# if done['__all__']:
# env_done = 1
# for a in range(env.get_num_agents()):
# agent.step(final_obs[a], final_action_dict[a], all_rewards[a], final_obs_next[a], done[a])
# break
# # Epsilon decay
# eps = max(eps_end, eps_decay * eps) # decrease epsilon
#
# done_window.append(env_done)
# scores_window.append(score / max_steps) # save most recent score
# scores.append(np.mean(scores_window))
# dones_list.append((np.mean(done_window)))
print
(
'
\r
Training {} Agents on ({},{}).
\t
Episode {}
\t
Average Score: {:.3f}
\t
Dones: {:.2f}%
\t
Epsilon: {:.2f}
\t
Action Probabilities:
\t
{}
'
.
format
(
env
.
get_num_agents
(),
x_dim
,
y_dim
,
trials
,
np
.
mean
(
scores_window
),
100
*
np
.
mean
(
done_window
),
eps
,
action_prob
/
np
.
sum
(
action_prob
)),
end
=
"
"
)
if
trials
%
100
==
0
:
print
(
'
\r
Training {} Agents.
\t
Episode {}
\t
Average Score: {:.3f}
\t
Dones: {:.2f}%
\t
Epsilon: {:.2f}
\t
Action Probabilities:
\t
{}
'
.
format
(
env
.
get_num_agents
(),
trials
,
np
.
mean
(
scores_window
),
100
*
np
.
mean
(
done_window
),
eps
,
action_prob
/
np
.
sum
(
action_prob
)))
torch
.
save
(
agent
.
qnetwork_local
.
state_dict
(),
'
./Nets/avoid_checkpoint
'
+
str
(
trials
)
+
'
.pth
'
)
action_prob
=
[
1
]
*
action_size
print
(
"
multi_agent_trainging.py (2)
"
)
if
__name__
==
'
__main__
'
:
print
(
"
main
"
)
main
(
sys
.
argv
[
1
:])
print
(
"
multi_agent_trainging.py (3)
"
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
torch_training/multi_agent_training.py
+
2
−
13
View file @
7c765f06
import
getopt
import
random
import
sys
from
collections
import
deque
import
getopt
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
random
import
torch
from
flatland.envs.generators
import
complex_rail_generator
from
flatland.envs.observations
import
TreeObsForRailEnv
...
...
@@ -17,8 +17,6 @@ import torch_training.Nets
from
torch_training.dueling_double_dqn
import
Agent
from
utils.observation_utils
import
norm_obs_clip
,
split_tree
print
(
"
multi_agent_trainging.py (1)
"
)
def
main
(
argv
):
try
:
...
...
@@ -29,7 +27,6 @@ def main(argv):
for
opt
,
arg
in
opts
:
if
opt
in
(
'
-n
'
,
'
--n_trials
'
):
n_trials
=
int
(
arg
)
print
(
"
main1
"
)
random
.
seed
(
1
)
np
.
random
.
seed
(
1
)
"""
...
...
@@ -66,8 +63,6 @@ def main(argv):
state_size
=
features_per_node
*
85
*
2
action_size
=
5
print
(
"
main3
"
)
# We set the number of episodes we would like to train on
if
'
n_trials
'
not
in
locals
():
n_trials
=
60000
...
...
@@ -93,7 +88,6 @@ def main(argv):
record_images
=
False
frame_step
=
0
print
(
"
Going to run training for {} trials...
"
.
format
(
n_trials
))
for
trials
in
range
(
1
,
n_trials
+
1
):
if
trials
%
50
==
0
and
not
demo
:
...
...
@@ -220,10 +214,5 @@ def main(argv):
plt
.
show
()
print
(
"
multi_agent_trainging.py (2)
"
)
if
__name__
==
'
__main__
'
:
print
(
"
main
"
)
main
(
sys
.
argv
[
1
:])
print
(
"
multi_agent_trainging.py (3)
"
)
This diff is collapsed.
Click to expand it.
tox.ini
+
1
−
2
View file @
7c765f06
...
...
@@ -22,8 +22,7 @@ passenv =
deps
=
-r{toxinidir}/requirements_torch_training.txt
commands
=
python
-m
pip
install
-r
requirements_torch_training.txt
python
torch_training/bla.py
--n_trials
=
10
python
torch_training/multi_agent_training.py
--n_trials
=
10
[flake8]
max-line-length
=
120
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment