Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
baselines
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Flatland
baselines
Commits
2cf1b9d1
Commit
2cf1b9d1
authored
5 years ago
by
u214892
Browse files
Options
Downloads
Patches
Plain Diff
#42 run baselines in ci
parent
ccf03494
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
torch_training/bla.py
+102
-102
102 additions, 102 deletions
torch_training/bla.py
with
102 additions
and
102 deletions
torch_training/bla.py
+
102
−
102
View file @
2cf1b9d1
...
...
@@ -92,108 +92,108 @@ def main(argv):
print
(
"
Going to run training for {} trials...
"
.
format
(
n_trials
))
for
trials
in
range
(
1
,
n_trials
+
1
):
if
trials
%
50
==
0
and
not
demo
:
x_dim
=
np
.
random
.
randint
(
8
,
20
)
y_dim
=
np
.
random
.
randint
(
8
,
20
)
n_agents
=
np
.
random
.
randint
(
3
,
8
)
n_goals
=
n_agents
+
np
.
random
.
randint
(
0
,
3
)
min_dist
=
int
(
0.75
*
min
(
x_dim
,
y_dim
))
env
=
RailEnv
(
width
=
x_dim
,
height
=
y_dim
,
rail_generator
=
complex_rail_generator
(
nr_start_goal
=
n_goals
,
nr_extra
=
5
,
min_dist
=
min_dist
,
max_dist
=
99999
,
seed
=
0
),
obs_builder_object
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
()),
number_of_agents
=
n_agents
)
env
.
reset
(
True
,
True
)
max_steps
=
int
(
3
*
(
env
.
height
+
env
.
width
))
agent_obs
=
[
None
]
*
env
.
get_num_agents
()
agent_next_obs
=
[
None
]
*
env
.
get_num_agents
()
# Reset environment
if
file_load
:
obs
=
env
.
reset
(
False
,
False
)
else
:
obs
=
env
.
reset
(
True
,
True
)
if
demo
:
env_renderer
.
set_new_rail
()
obs_original
=
obs
.
copy
()
final_obs
=
obs
.
copy
()
final_obs_next
=
obs
.
copy
()
for
a
in
range
(
env
.
get_num_agents
()):
data
,
distance
,
agent_data
=
split_tree
(
tree
=
np
.
array
(
obs
[
a
]),
current_depth
=
0
)
data
=
norm_obs_clip
(
data
)
distance
=
norm_obs_clip
(
distance
)
agent_data
=
np
.
clip
(
agent_data
,
-
1
,
1
)
obs
[
a
]
=
np
.
concatenate
((
np
.
concatenate
((
data
,
distance
)),
agent_data
))
agent_data
=
env
.
agents
[
a
]
speed
=
1
# np.random.randint(1,5)
agent_data
.
speed_data
[
'
speed
'
]
=
1.
/
speed
for
i
in
range
(
2
):
time_obs
.
append
(
obs
)
# env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5)
for
a
in
range
(
env
.
get_num_agents
()):
agent_obs
[
a
]
=
np
.
concatenate
((
time_obs
[
0
][
a
],
time_obs
[
1
][
a
]))
score
=
0
env_done
=
0
# Run episode
for
step
in
range
(
max_steps
):
if
demo
:
env_renderer
.
renderEnv
(
show
=
True
,
show_observations
=
False
)
# observation_helper.util_print_obs_subtree(obs_original[0])
if
record_images
:
env_renderer
.
gl
.
saveImage
(
"
./Images/flatland_frame_{:04d}.bmp
"
.
format
(
frame_step
))
frame_step
+=
1
# print(step)
# Action
for
a
in
range
(
env
.
get_num_agents
()):
if
demo
:
eps
=
0
# action = agent.act(np.array(obs[a]), eps=eps)
action
=
agent
.
act
(
agent_obs
[
a
],
eps
=
eps
)
action_prob
[
action
]
+=
1
action_dict
.
update
({
a
:
action
})
# Environment step
next_obs
,
all_rewards
,
done
,
_
=
env
.
step
(
action_dict
)
# print(all_rewards,action)
obs_original
=
next_obs
.
copy
()
for
a
in
range
(
env
.
get_num_agents
()):
data
,
distance
,
agent_data
=
split_tree
(
tree
=
np
.
array
(
next_obs
[
a
]),
current_depth
=
0
)
data
=
norm_obs_clip
(
data
)
distance
=
norm_obs_clip
(
distance
)
agent_data
=
np
.
clip
(
agent_data
,
-
1
,
1
)
next_obs
[
a
]
=
np
.
concatenate
((
np
.
concatenate
((
data
,
distance
)),
agent_data
))
time_obs
.
append
(
next_obs
)
# Update replay buffer and train agent
for
a
in
range
(
env
.
get_num_agents
()):
agent_next_obs
[
a
]
=
np
.
concatenate
((
time_obs
[
0
][
a
],
time_obs
[
1
][
a
]))
if
done
[
a
]:
final_obs
[
a
]
=
agent_obs
[
a
].
copy
()
final_obs_next
[
a
]
=
agent_next_obs
[
a
].
copy
()
final_action_dict
.
update
({
a
:
action_dict
[
a
]})
if
not
demo
and
not
done
[
a
]:
agent
.
step
(
agent_obs
[
a
],
action_dict
[
a
],
all_rewards
[
a
],
agent_next_obs
[
a
],
done
[
a
])
score
+=
all_rewards
[
a
]
/
env
.
get_num_agents
()
agent_obs
=
agent_next_obs
.
copy
()
if
done
[
'
__all__
'
]:
env_done
=
1
for
a
in
range
(
env
.
get_num_agents
()):
agent
.
step
(
final_obs
[
a
],
final_action_dict
[
a
],
all_rewards
[
a
],
final_obs_next
[
a
],
done
[
a
])
break
# Epsilon decay
eps
=
max
(
eps_end
,
eps_decay
*
eps
)
# decrease epsilon
done_window
.
append
(
env_done
)
scores_window
.
append
(
score
/
max_steps
)
# save most recent score
scores
.
append
(
np
.
mean
(
scores_window
))
dones_list
.
append
((
np
.
mean
(
done_window
)))
#
if trials % 50 == 0 and not demo:
#
x_dim = np.random.randint(8, 20)
#
y_dim = np.random.randint(8, 20)
#
n_agents = np.random.randint(3, 8)
#
n_goals = n_agents + np.random.randint(0, 3)
#
min_dist = int(0.75 * min(x_dim, y_dim))
#
env = RailEnv(width=x_dim,
#
height=y_dim,
#
rail_generator=complex_rail_generator(nr_start_goal=n_goals, nr_extra=5, min_dist=min_dist,
#
max_dist=99999,
#
seed=0),
#
obs_builder_object=TreeObsForRailEnv(max_depth=3,
#
predictor=ShortestPathPredictorForRailEnv()),
#
number_of_agents=n_agents)
#
env.reset(True, True)
#
max_steps = int(3 * (env.height + env.width))
#
agent_obs = [None] * env.get_num_agents()
#
agent_next_obs = [None] * env.get_num_agents()
#
#
Reset environment
#
if file_load:
#
obs = env.reset(False, False)
#
else:
#
obs = env.reset(True, True)
#
if demo:
#
env_renderer.set_new_rail()
#
obs_original = obs.copy()
#
final_obs = obs.copy()
#
final_obs_next = obs.copy()
#
for a in range(env.get_num_agents()):
#
data, distance, agent_data = split_tree(tree=np.array(obs[a]),
#
current_depth=0)
#
data = norm_obs_clip(data)
#
distance = norm_obs_clip(distance)
#
agent_data = np.clip(agent_data, -1, 1)
#
obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
#
agent_data = env.agents[a]
#
speed = 1 # np.random.randint(1,5)
#
agent_data.speed_data['speed'] = 1. / speed
#
#
for i in range(2):
#
time_obs.append(obs)
#
#
env.obs_builder.util_print_obs_subtree(tree=obs[0], num_elements_per_node=5)
#
for a in range(env.get_num_agents()):
#
agent_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a]))
#
#
score = 0
#
env_done = 0
#
#
Run episode
#
for step in range(max_steps):
#
if demo:
#
env_renderer.renderEnv(show=True, show_observations=False)
#
# observation_helper.util_print_obs_subtree(obs_original[0])
#
if record_images:
#
env_renderer.gl.saveImage("./Images/flatland_frame_{:04d}.bmp".format(frame_step))
#
frame_step += 1
#
# print(step)
#
# Action
#
for a in range(env.get_num_agents()):
#
if demo:
#
eps = 0
#
# action = agent.act(np.array(obs[a]), eps=eps)
#
action = agent.act(agent_obs[a], eps=eps)
#
action_prob[action] += 1
#
action_dict.update({a: action})
#
# Environment step
#
#
next_obs, all_rewards, done, _ = env.step(action_dict)
#
# print(all_rewards,action)
#
obs_original = next_obs.copy()
#
for a in range(env.get_num_agents()):
#
data, distance, agent_data = split_tree(tree=np.array(next_obs[a]),
#
current_depth=0)
#
data = norm_obs_clip(data)
#
distance = norm_obs_clip(distance)
#
agent_data = np.clip(agent_data, -1, 1)
#
next_obs[a] = np.concatenate((np.concatenate((data, distance)), agent_data))
#
time_obs.append(next_obs)
#
#
# Update replay buffer and train agent
#
for a in range(env.get_num_agents()):
#
agent_next_obs[a] = np.concatenate((time_obs[0][a], time_obs[1][a]))
#
if done[a]:
#
final_obs[a] = agent_obs[a].copy()
#
final_obs_next[a] = agent_next_obs[a].copy()
#
final_action_dict.update({a: action_dict[a]})
#
if not demo and not done[a]:
#
agent.step(agent_obs[a], action_dict[a], all_rewards[a], agent_next_obs[a], done[a])
#
score += all_rewards[a] / env.get_num_agents()
#
#
agent_obs = agent_next_obs.copy()
#
if done['__all__']:
#
env_done = 1
#
for a in range(env.get_num_agents()):
#
agent.step(final_obs[a], final_action_dict[a], all_rewards[a], final_obs_next[a], done[a])
#
break
#
#
Epsilon decay
#
eps = max(eps_end, eps_decay * eps) # decrease epsilon
#
#
done_window.append(env_done)
#
scores_window.append(score / max_steps) # save most recent score
#
scores.append(np.mean(scores_window))
#
dones_list.append((np.mean(done_window)))
print
(
'
\r
Training {} Agents on ({},{}).
\t
Episode {}
\t
Average Score: {:.3f}
\t
Dones: {:.2f}%
\t
Epsilon: {:.2f}
\t
Action Probabilities:
\t
{}
'
.
format
(
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment