Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
baselines
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Flatland
baselines
Commits
1e8ee7fd
Commit
1e8ee7fd
authored
5 years ago
by
Erik Nygren
Browse files
Options
Downloads
Patches
Plain Diff
updated multi/agent inference
parent
5befd0e4
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
torch_training/multi_agent_inference.py
+55
-43
55 additions, 43 deletions
torch_training/multi_agent_inference.py
with
55 additions
and
43 deletions
torch_training/multi_agent_inference.py
+
55
−
43
View file @
1e8ee7fd
...
@@ -15,63 +15,70 @@ import torch_training.Nets
...
@@ -15,63 +15,70 @@ import torch_training.Nets
from
torch_training.dueling_double_dqn
import
Agent
from
torch_training.dueling_double_dqn
import
Agent
from
utils.observation_utils
import
normalize_observation
from
utils.observation_utils
import
normalize_observation
random
.
seed
(
3
)
random
.
seed
(
1
)
np
.
random
.
seed
(
2
)
np
.
random
.
seed
(
1
)
"""
file_name =
"
./railway/complex_scene.pkl
"
env = RailEnv(width=10,
height=20,
rail_generator=rail_from_file(file_name),
obs_builder_object=TreeObsForRailEnv(max_depth=3, predictor=ShortestPathPredictorForRailEnv()))
x_dim = env.width
y_dim = env.height
"""
# Parameters for the Environment
# Parameters for the Environment
x_dim
=
20
x_dim
=
25
y_dim
=
20
y_dim
=
25
n_agents
=
5
n_agents
=
1
tree_depth
=
2
# We are training an Agent using the Tree Observation with depth 2
observation_builder
=
TreeObsForRailEnv
(
max_depth
=
2
)
# Use a the malfunction generator to break agents from time to time
# Use a the malfunction generator to break agents from time to time
stochastic_data
=
{
'
prop_malfunction
'
:
0.
1
,
# Percentage of defective agents
stochastic_data
=
{
'
prop_malfunction
'
:
0.
0
,
# Percentage of defective agents
'
malfunction_rate
'
:
30
,
# Rate of malfunction occurence
'
malfunction_rate
'
:
30
,
# Rate of malfunction occurence
'
min_duration
'
:
3
,
# Minimal duration of malfunction
'
min_duration
'
:
3
,
# Minimal duration of malfunction
'
max_duration
'
:
20
# Max duration of malfunction
'
max_duration
'
:
20
# Max duration of malfunction
}
}
# Custom observation builder
# Custom observation builder
predictor
=
ShortestPathPredictorForRailEnv
()
TreeObservation
=
TreeObsForRailEnv
(
max_depth
=
2
)
observation_helper
=
TreeObsForRailEnv
(
max_depth
=
tree_depth
,
predictor
=
predictor
)
# Different agent types (trains) with different speeds.
# Different agent types (trains) with different speeds.
speed_ration_map
=
{
1.
:
0.25
,
# Fast passenger train
speed_ration_map
=
{
1.
:
1.
,
# Fast passenger train
1.
/
2.
:
0.
25
,
# Fast freight train
1.
/
2.
:
0.
0
,
# Fast freight train
1.
/
3.
:
0.
25
,
# Slow commuter train
1.
/
3.
:
0.
0
,
# Slow commuter train
1.
/
4.
:
0.
25
}
# Slow freight train
1.
/
4.
:
0.
0
}
# Slow freight train
env
=
RailEnv
(
width
=
x_dim
,
env
=
RailEnv
(
width
=
x_dim
,
height
=
y_dim
,
height
=
y_dim
,
rail_generator
=
sparse_rail_generator
(
num_cities
=
5
,
rail_generator
=
sparse_rail_generator
(
max_
num_cities
=
3
,
# Number of cities in map (where train stations are)
# Number of cities in map (where train stations are)
num_intersections
=
4
,
seed
=
1
,
# Random seed
# Number of intersections (no start / target)
grid_mode
=
False
,
num_trainstations
=
10
,
# Number of possible start/targets on map
max_rails_between_cities
=
2
,
min_node_dist
=
3
,
# Minimal distance of nodes
max_rails_in_city
=
2
),
node_radius
=
2
,
# Proximity of stations to city center
num_neighb
=
3
,
# Number of connections to other cities/intersections
seed
=
15
,
# Random seed
grid_mode
=
True
,
enhance_intersection
=
False
),
schedule_generator
=
sparse_schedule_generator
(
speed_ration_map
),
schedule_generator
=
sparse_schedule_generator
(
speed_ration_map
),
number_of_agents
=
n_agents
,
number_of_agents
=
n_agents
,
stochastic_data
=
stochastic_data
,
# Malfunction data generator
stochastic_data
=
stochastic_data
,
# Malfunction data generator
obs_builder_object
=
o
bservation
_helper
)
obs_builder_object
=
TreeO
bservation
)
env
.
reset
(
True
,
True
)
env
.
reset
(
True
,
True
)
observation_helper
=
TreeObsForRailEnv
(
max_depth
=
3
,
predictor
=
ShortestPathPredictorForRailEnv
())
env_renderer
=
RenderTool
(
env
,
gl
=
"
PILSVG
"
,
)
env_renderer
=
RenderTool
(
env
,
gl
=
"
PILSVG
"
,
)
handle
=
env
.
get_agent_handles
()
num_features_per_node
=
env
.
obs_builder
.
observation_dim
num_features_per_node
=
env
.
obs_builder
.
observation_dim
tree_depth
=
2
nr_nodes
=
0
nr_nodes
=
0
for
i
in
range
(
tree_depth
+
1
):
for
i
in
range
(
tree_depth
+
1
):
nr_nodes
+=
np
.
power
(
4
,
i
)
nr_nodes
+=
np
.
power
(
4
,
i
)
state_size
=
num_features_per_node
*
nr_nodes
state_size
=
num_features_per_node
*
nr_nodes
action_size
=
5
action_size
=
5
n_trials
=
10
# We set the number of episodes we would like to train on
observation_radius
=
10
if
'
n_trials
'
not
in
locals
():
n_trials
=
60000
max_steps
=
int
(
3
*
(
env
.
height
+
env
.
width
))
max_steps
=
int
(
3
*
(
env
.
height
+
env
.
width
))
eps
=
1.
eps
=
1.
eps_end
=
0.005
eps_end
=
0.005
...
@@ -80,14 +87,13 @@ action_dict = dict()
...
@@ -80,14 +87,13 @@ action_dict = dict()
final_action_dict
=
dict
()
final_action_dict
=
dict
()
scores_window
=
deque
(
maxlen
=
100
)
scores_window
=
deque
(
maxlen
=
100
)
done_window
=
deque
(
maxlen
=
100
)
done_window
=
deque
(
maxlen
=
100
)
time_obs
=
deque
(
maxlen
=
2
)
scores
=
[]
scores
=
[]
dones_list
=
[]
dones_list
=
[]
action_prob
=
[
0
]
*
action_size
action_prob
=
[
0
]
*
action_size
agent_obs
=
[
None
]
*
env
.
get_num_agents
()
agent_obs
=
[
None
]
*
env
.
get_num_agents
()
agent_next_obs
=
[
None
]
*
env
.
get_num_agents
()
agent_next_obs
=
[
None
]
*
env
.
get_num_agents
()
agent
=
Agent
(
state_size
,
action_size
)
agent
=
Agent
(
state_size
,
action_size
)
with
path
(
torch_training
.
Nets
,
"
avoid_checkpoint
5
00.pth
"
)
as
file_in
:
with
path
(
torch_training
.
Nets
,
"
avoid
er
_checkpoint
10
00.pth
"
)
as
file_in
:
agent
.
qnetwork_local
.
load_state_dict
(
torch
.
load
(
file_in
))
agent
.
qnetwork_local
.
load_state_dict
(
torch
.
load
(
file_in
))
record_images
=
False
record_images
=
False
...
@@ -97,29 +103,35 @@ for trials in range(1, n_trials + 1):
...
@@ -97,29 +103,35 @@ for trials in range(1, n_trials + 1):
# Reset environment
# Reset environment
obs
,
info
=
env
.
reset
(
True
,
True
)
obs
,
info
=
env
.
reset
(
True
,
True
)
env_renderer
.
reset
()
env_renderer
.
reset
()
# Build agent specific observations
for
a
in
range
(
env
.
get_num_agents
()):
for
a
in
range
(
env
.
get_num_agents
()):
agent_obs
[
a
]
=
normalize_observation
(
obs
[
a
],
observation_radius
=
10
)
agent_obs
[
a
]
=
agent_obs
[
a
]
=
normalize_observation
(
obs
[
a
],
tree_depth
,
observation_radius
=
10
)
# Reset score and done
score
=
0
env_done
=
0
# Run episode
# Run episode
for
step
in
range
(
max_steps
):
for
step
in
range
(
max_steps
):
env_renderer
.
render_env
(
show
=
True
,
show_observations
=
False
,
show_predictions
=
True
)
if
record_images
:
env_renderer
.
gl
.
save_image
(
"
./Images/Avoiding/flatland_frame_{:04d}.bmp
"
.
format
(
frame_step
))
frame_step
+=
1
# time.sleep(1.5)
# Action
# Action
for
a
in
range
(
env
.
get_num_agents
()):
for
a
in
range
(
env
.
get_num_agents
()):
action
=
agent
.
act
(
agent_obs
[
a
],
eps
=
0
)
if
info
[
'
action_required
'
][
a
]:
action
=
agent
.
act
(
agent_obs
[
a
],
eps
=
0.
)
else
:
action
=
0
action_prob
[
action
]
+=
1
action_dict
.
update
({
a
:
action
})
action_dict
.
update
({
a
:
action
})
# Environment step
# Environment step
next_obs
,
all_rewards
,
done
,
_
=
env
.
step
(
action_dict
)
obs
,
all_rewards
,
done
,
_
=
env
.
step
(
action_dict
)
env_renderer
.
render_env
(
show
=
True
,
show_predictions
=
True
,
show_observations
=
False
)
# Build agent specific observations and normalize
for
a
in
range
(
env
.
get_num_agents
()):
for
a
in
range
(
env
.
get_num_agents
()):
agent_obs
[
a
]
=
normalize_observation
(
next_obs
[
a
],
observation_radius
=
10
)
agent_obs
[
a
]
=
normalize_observation
(
obs
[
a
],
tree_depth
,
observation_radius
=
10
)
if
done
[
'
__all__
'
]:
if
done
[
'
__all__
'
]:
break
break
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment