Skip to content
Snippets Groups Projects
Commit 054bc93a authored by u214892's avatar u214892
Browse files

#42 run baselines in ci

parent 31b23f2c
No related branches found
No related tags found
1 merge request!242 run baselines in ci
Pipeline #1405 canceled
import random
from collections import deque from collections import deque
from sys import path
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np import numpy as np
import random
import torch import torch
from dueling_double_dqn import Agent from dueling_double_dqn import Agent
from flatland.envs.generators import complex_rail_generator from flatland.envs.generators import complex_rail_generator
from flatland.envs.observations import TreeObsForRailEnv from flatland.envs.observations import TreeObsForRailEnv
from flatland.envs.predictions import ShortestPathPredictorForRailEnv from flatland.envs.predictions import ShortestPathPredictorForRailEnv
from flatland.envs.rail_env import RailEnv from flatland.envs.rail_env import RailEnv
from flatland.utils.rendertools import RenderTool from flatland.utils.rendertools import RenderTool
from utils.observation_utils import norm_obs_clip, split_tree from utils.observation_utils import norm_obs_clip, split_tree
random.seed(1) random.seed(1)
...@@ -62,7 +63,8 @@ action_prob = [0] * action_size ...@@ -62,7 +63,8 @@ action_prob = [0] * action_size
agent_obs = [None] * env.get_num_agents() agent_obs = [None] * env.get_num_agents()
agent_next_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents()
agent = Agent(state_size, action_size, "FC", 0) agent = Agent(state_size, action_size, "FC", 0)
agent.qnetwork_local.load_state_dict(torch.load('./Nets/avoid_checkpoint30000.pth')) with path("torch_training/Nets", "avoid_checkpoint30000.pth") as file_in:
agent.qnetwork_local.load_state_dict(torch.load(file_in))
demo = True demo = True
record_images = False record_images = False
......
from sys import path
import random import random
from collections import deque from collections import deque
...@@ -87,7 +89,9 @@ action_prob = [0] * action_size ...@@ -87,7 +89,9 @@ action_prob = [0] * action_size
agent_obs = [None] * env.get_num_agents() agent_obs = [None] * env.get_num_agents()
agent_next_obs = [None] * env.get_num_agents() agent_next_obs = [None] * env.get_num_agents()
agent = Agent(state_size, action_size, "FC", 0) agent = Agent(state_size, action_size, "FC", 0)
agent.qnetwork_local.load_state_dict(torch.load('./Nets/avoid_checkpoint30000.pth')) with path("torch_training/Nets", "avoid_checkpoint30000.pth") as file_in:
agent.qnetwork_local.load_state_dict(torch.load(file_in))
demo = True demo = True
record_images = False record_images = False
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment