render_training_result.py 6.13 KiB
from RailEnvRLLibWrapper import RailEnvRLLibWrapper
from custom_preprocessors import TreeObsPreprocessor
import gym
import os
from ray.rllib.agents.ppo.ppo import DEFAULT_CONFIG
from ray.rllib.agents.ppo.ppo import PPOTrainer as Trainer
from ray.rllib.agents.ppo.ppo_policy_graph import PPOPolicyGraph as PolicyGraph
from ray.rllib.models import ModelCatalog
import ray
import numpy as np
import gin
from flatland.envs.predictions import DummyPredictorForRailEnv, ShortestPathPredictorForRailEnv
gin.external_configurable(DummyPredictorForRailEnv)
gin.external_configurable(ShortestPathPredictorForRailEnv)
from ray.rllib.utils.seed import seed as set_seed
from flatland.envs.observations import TreeObsForRailEnv
from flatland.utils.rendertools import RenderTool
import time
gin.external_configurable(TreeObsForRailEnv)
ModelCatalog.register_custom_preprocessor("tree_obs_prep", TreeObsPreprocessor)
ray.init() # object_store_memory=150000000000, redis_max_memory=30000000000)
__file_dirname__ = os.path.dirname(os.path.realpath(__file__))
CHECKPOINT_PATH = os.path.join(__file_dirname__, 'experiment_configs', 'config_example', 'ppo_policy_two_obs_with_predictions_n_agents_4_map_size_20q58l5_f7',
'checkpoint_101', 'checkpoint-101')
N_EPISODES = 10
N_STEPS_PER_EPISODE = 50
def render_training_result(config):
print('Init Env')
set_seed(config['seed'], config['seed'], config['seed'])
# Example configuration to generate a random rail
env_config = {"width": config['map_width'],
"height": config['map_height'],
"rail_generator": config["rail_generator"],
"nr_extra": config["nr_extra"],
"number_of_agents": config['n_agents'],
"seed": config['seed'],
"obs_builder": config['obs_builder'],
"min_dist": config['min_dist'],
"step_memory": config["step_memory"]}
# Observation space and action space definitions
if isinstance(config["obs_builder"], TreeObsForRailEnv):
obs_space = gym.spaces.Tuple((gym.spaces.Box(low=-float('inf'), high=float('inf'), shape=(168,)),) * 2)
preprocessor = TreeObsPreprocessor
else:
raise ValueError("Undefined observation space")
act_space = gym.spaces.Discrete(5)
# Dict with the different policies to train
policy_graphs = {
"ppo_policy": (PolicyGraph, obs_space, act_space, {})
}
def policy_mapping_fn(agent_id):
return "ppo_policy"
# Trainer configuration
trainer_config = DEFAULT_CONFIG.copy()
trainer_config['model'] = {"fcnet_hiddens": config['hidden_sizes']}
trainer_config['multiagent'] = {"policy_graphs": policy_graphs,
"policy_mapping_fn": policy_mapping_fn,
"policies_to_train": list(policy_graphs.keys())}
trainer_config["num_workers"] = 0
trainer_config["num_cpus_per_worker"] = 4
trainer_config["num_gpus"] = 0.2
trainer_config["num_gpus_per_worker"] = 0.2
trainer_config["num_cpus_for_driver"] = 1
trainer_config["num_envs_per_worker"] = 1
trainer_config['entropy_coeff'] = config['entropy_coeff']
trainer_config["env_config"] = env_config
trainer_config["batch_mode"] = "complete_episodes"
trainer_config['simple_optimizer'] = False
trainer_config['postprocess_inputs'] = True
trainer_config['log_level'] = 'WARN'
trainer_config['num_sgd_iter'] = 10
trainer_config['clip_param'] = 0.2
trainer_config['kl_coeff'] = config['kl_coeff']
trainer_config['lambda'] = config['lambda_gae']
env = RailEnvRLLibWrapper(env_config)
trainer = Trainer(env=RailEnvRLLibWrapper, config=trainer_config)
trainer.restore(CHECKPOINT_PATH)
policy = trainer.get_policy("ppo_policy")
preprocessor = preprocessor(obs_space)
env_renderer = RenderTool(env, gl="PIL")
for episode in range(N_EPISODES):
observation = env.reset()
for i in range(N_STEPS_PER_EPISODE):
preprocessed_obs = []
for obs in observation.values():
preprocessed_obs.append(preprocessor.transform(obs))
action, _, infos = policy.compute_actions(preprocessed_obs, [])
logits = infos['behaviour_logits']
actions = dict()
# We select the greedy action.
for j, logit in enumerate(logits):
actions[j] = np.argmax(logit)
# In case we prefer to sample an action stochastically according to the policy graph.
# for j, act in enumerate(action):
# actions[j] = act
# Time to see the rendering at one step
time.sleep(1)
env_renderer.renderEnv(show=True, frames=True, iEpisode=episode, iStep=i,
action_dict=list(actions.values()))
observation, _, _, _ = env.step(actions)
env_renderer.close_window()
@gin.configurable
def run_experiment(name, num_iterations, n_agents, hidden_sizes, save_every,
map_width, map_height, policy_folder_name, obs_builder,
entropy_coeff, seed, conv_model, rail_generator, nr_extra, kl_coeff, lambda_gae,
step_memory, min_dist):
render_training_result(
config={"n_agents": n_agents,
"hidden_sizes": hidden_sizes, # Array containing the sizes of the network layers
"save_every": save_every,
"map_width": map_width,
"map_height": map_height,
'policy_folder_name': policy_folder_name,
"obs_builder": obs_builder,
"entropy_coeff": entropy_coeff,
"seed": seed,
"conv_model": conv_model,
"rail_generator": rail_generator,
"nr_extra": nr_extra,
"kl_coeff": kl_coeff,
"lambda_gae": lambda_gae,
"min_dist": min_dist,
"step_memory": step_memory
}
)
if __name__ == '__main__':
gin.parse_config_file(os.path.join(__file_dirname__, 'experiment_configs', 'config_example', 'config.gin'))
run_experiment()