Skip to content
Snippets Groups Projects
Commit fd8f315f authored by spiglerg's avatar spiglerg
Browse files

lint fixes

parent a96ddb70
No related branches found
No related tags found
No related merge requests found
import random
from flatland.envs.generators import random_rail_generator, random_rail_generator
from flatland.envs.generators import random_rail_generator
from flatland.envs.rail_env import RailEnv
from flatland.utils.rendertools import RenderTool
from flatland.core.env_observation_builder import ObservationBuilder
import numpy as np
random.seed(100)
np.random.seed(100)
class CustomObs(ObservationBuilder):
def __init__(self):
self.observation_space = [5]
......@@ -20,6 +21,7 @@ class CustomObs(ObservationBuilder):
observation = handle*np.ones((5,))
return observation
env = RailEnv(width=7,
height=7,
rail_generator=random_rail_generator(),
......@@ -29,4 +31,4 @@ env = RailEnv(width=7,
# Print the observation vector for each agents
obs, all_rewards, done, _ = env.step({0: 0})
for i in range(env.get_num_agents()):
print("Agent ", i,"'s observation: ", obs[i])
print("Agent ", i, "'s observation: ", obs[i])
import random
from flatland.envs.generators import random_rail_generator, random_rail_generator
from flatland.envs.rail_env import RailEnv
from flatland.core.transitions import RailEnvTransitions
from flatland.core.transition_map import GridTransitionMap
......@@ -10,6 +9,7 @@ import numpy as np
random.seed(100)
np.random.seed(100)
def custom_rail_generator():
def generator(width, height, num_agents=0, num_resets=0):
rail_trans = RailEnvTransitions()
......@@ -24,6 +24,7 @@ def custom_rail_generator():
return grid_map, agents_positions, agents_direction, agents_target
return generator
env = RailEnv(width=6,
height=4,
rail_generator=custom_rail_generator(),
......
......@@ -48,7 +48,11 @@ class Scenario_Generator:
def generate_complex_scenario(number_of_agents=3):
env = RailEnv(width=15,
height=15,
rail_generator=complex_rail_generator(nr_start_goal=6, nr_extra=30, min_dist=10, max_dist=99999, seed=0),
rail_generator=complex_rail_generator(nr_start_goal=6,
nr_extra=30,
min_dist=10,
max_dist=99999,
seed=0),
number_of_agents=number_of_agents)
return env
......@@ -150,7 +154,9 @@ class Demo:
obs = self.env.reset(False, False)
for a in range(self.env.get_num_agents()):
data, distance = self.env.obs_builder.split_tree(tree=np.array(obs[a]), num_features_per_node=5, current_depth=0)
data, distance = self.env.obs_builder.split_tree(tree=np.array(obs[a]),
num_features_per_node=5,
current_depth=0)
data = norm_obs_clip(data)
distance = norm_obs_clip(distance)
......@@ -174,7 +180,7 @@ class Demo:
action_prob[action] += 1
action_dict.update({a: action})
self.renderer.renderEnv(show=True,action_dict=action_dict)
self.renderer.renderEnv(show=True, action_dict=action_dict)
# Environment step
next_obs, all_rewards, done, _ = self.env.step(action_dict)
......
import random
from flatland.envs.generators import random_rail_generator, rail_from_manual_specifications_generator
from flatland.envs.generators import rail_from_manual_specifications_generator
from flatland.envs.rail_env import RailEnv
from flatland.envs.observations import TreeObsForRailEnv
from flatland.utils.rendertools import RenderTool
import numpy as np
# Example generate a rail given a manual specification,
# a map of tuples (cell_type, rotation)
......
import random
from flatland.envs.generators import random_rail_generator, random_rail_generator
from flatland.envs.generators import random_rail_generator
from flatland.envs.rail_env import RailEnv
from flatland.utils.rendertools import RenderTool
from flatland.core.env_observation_builder import ObservationBuilder
from flatland.core.env_observation_builder import TreeObsForRailEnv
import numpy as np
random.seed(100)
......
from flatland.envs.generators import complex_rail_generator
from flatland.envs.rail_env import RailEnv
import numpy as np
from flatland.utils.rendertools import RenderTool
np.random.seed(1)
......
......@@ -91,7 +91,7 @@ class RailEnv(Environment):
self.obs_builder._set_env(self)
self.action_space = [1]
self.observation_space = self.obs_builder.observation_space # updated on resets?
self.observation_space = self.obs_builder.observation_space # updated on resets?
self.actions = [0] * number_of_agents
self.rewards = [0] * number_of_agents
......@@ -163,7 +163,7 @@ class RailEnv(Environment):
# Reset the state of the observation builder with the new environment
self.obs_builder.reset()
self.observation_space = self.obs_builder.observation_space # <-- change on reset?
self.observation_space = self.obs_builder.observation_space # <-- change on reset?
# Return the new observation vectors for each agent
return self._get_observations()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment