Skip to content
Snippets Groups Projects
Commit ead89488 authored by Erik Nygren's avatar Erik Nygren
Browse files

Minor fixes in training_navigation.py

parent 42e55fbd
No related branches found
No related tags found
No related merge requests found
...@@ -36,7 +36,7 @@ env = RailEnv(width=20, ...@@ -36,7 +36,7 @@ env = RailEnv(width=20,
""" """
env = RailEnv(width=15, env = RailEnv(width=15,
height=15, height=15,
rail_generator=complex_rail_generator(nr_start_goal=2, nr_extra=30, min_dist=5, max_dist=99999, seed=0), rail_generator=complex_rail_generator(nr_start_goal=6, nr_extra=30, min_dist=10, max_dist=99999, seed=0),
number_of_agents=3) number_of_agents=3)
""" """
...@@ -144,8 +144,8 @@ for trials in range(1, n_trials + 1): ...@@ -144,8 +144,8 @@ for trials in range(1, n_trials + 1):
# Run episode # Run episode
for step in range(100): for step in range(100):
if demo: if demo:
env_renderer.renderEnv(show=True, obsrender=True) env_renderer.renderEnv(show=True)
time.sleep(2)
# print(step) # print(step)
# Action # Action
for a in range(env.get_num_agents()): for a in range(env.get_num_agents()):
...@@ -193,29 +193,15 @@ for trials in range(1, n_trials + 1): ...@@ -193,29 +193,15 @@ for trials in range(1, n_trials + 1):
scores.append(np.mean(scores_window)) scores.append(np.mean(scores_window))
dones_list.append((np.mean(done_window))) dones_list.append((np.mean(done_window)))
print( print('\rTraining {} Agents.\t Episode {}\t Average Score: {:.0f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format(
'\rTraining {} Agents.\t' +
'Episode {}\t' +
'Average Score: {:.0f}\t' +
'Dones: {:.2f}%\t' +
'Epsilon: {:.2f} \t ' +
'Action Probabilities: \t ' +
'{}'.format(
env.get_num_agents(), env.get_num_agents(),
trials, trials,
np.mean(scores_window), np.mean(scores_window),
100 * np.mean(done_window), 100 * np.mean(done_window),
eps, action_prob / np.sum(action_prob)), eps, action_prob / np.sum(action_prob)), end=" ")
end=" ")
if trials % 100 == 0: if trials % 100 == 0:
print( print('\rTraining {} Agents.\t Episode {}\t Average Score: {:.0f}\tDones: {:.2f}%\tEpsilon: {:.2f} \t Action Probabilities: \t {}'.format(
'\rTraining {} Agents.\t' +
'Episode {}\t' +
'Average Score: {:.0f}\t' +
'Dones: {:.2f}%\t' +
'Epsilon: {:.2f} \t ' +
'Action Probabilities: \t ' +
'{}'.format(
env.get_num_agents(), env.get_num_agents(),
trials, trials,
np.mean(scores_window), np.mean(scores_window),
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment